L))

Check for
updates

sem2vec: Semantics-aware Assembly Tracelet Embedding

HUAIJIN WANG, PINGCHUAN MA, and SHUAI WANG, Hong Kong University of Science and
Technology, China
QIYI TANG, SEN NIE, and SHI WU, Keen Security Lab, Tencent, China

Binary code similarity is the foundation of many security and software engineering applications. Recent
works leverage deep neural networks (DNN) to learn a numeric vector representation (namely, embeddings)
of assembly functions, enabling similarity analysis in the numeric space. However, existing DNN-based tech-
niques capture syntactic-, control flow-, or data flow-level information of assembly code, which is too coarse-
grained to represent program functionality. These methods can suffer from low robustness to challenging
settings such as compiler optimizations and obfuscations.

We present sem2vec, a binary code embedding framework that learns from semantics. Given the control-
flow graph (CFG) of an assembly function, we divide it into tracelets, denoting continuous and short execu-
tion traces that are reachable from the function entry point. We use symbolic execution to extract symbolic
constraints and other auxiliary information on each tracelet. We then train masked language models to com-
pute embeddings of symbolic execution outputs. Last, we use graph neural networks, to aggregate tracelet
embeddings into the CFG-level embedding for a function. Our evaluation shows that sem2vec extracts high-
quality embedding and is robust against different compilers, optimizations, architectures, and popular obfus-
cation methods including virtualization obfuscation. We further augment a vulnerability search application
with embeddings computed by sem2vec and demonstrate a significant improvement in vulnerability search
accuracy.

CCS Concepts: « Security and privacy — Software security engineering;
Additional Key Words and Phrases: Symbolic execution, embedding, graph neural network, binary code
similarity

ACM Reference format:

Huaijin Wang, Pingchuan Ma, Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2023. sem2vec: Semantics-aware
Assembly Tracelet Embedding. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 90 (May 2023), 34 pages.
https://doi.org/10.1145/3569933

1 INTRODUCTION

Binary code matching is the core building block of many important software engineering and
security applications. For example, malware analysis compares suspicious code to known mal-
ware families to determine whether it is malicious [33, 45]. Similarly, given a known software

This work was supported in part by CCF-Tencent Open Research Fund.

Authors’ addresses: H. Wang, P. Ma, and S. Wang (corresponding author), Hong Kong University of Science and Technology,
Clear Water Bay, Sai Kung, Hong Kong, China; emails: {hwangdz, pmaab, shuaiw}@cse.ust.hk; Q. Tang, S. Nie, and S. Wu,
Keen Security Lab, Tencent, Tianlin Road, Xuhu, Shanghai, China; emails: {dodgetang, snie, shiwu}@tencent.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1049-331X/2023/05-ART90 $15.00

https://doi.org/10.1145/3569933

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

https://orcid.org/0000-0002-1066-0331
https://orcid.org/0000-0001-7680-2817
https://orcid.org/0000-0002-0866-0308
https://orcid.org/0000-0002-8200-7518
https://orcid.org/0000-0003-4154-2941
https://orcid.org/0000-0002-6842-7487
https://doi.org/10.1145/3569933
mailto:permissions@acm.org
https://doi.org/10.1145/3569933
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569933&domain=pdf&date_stamp=2023-05-27

90:2 H. Wang et al.

vulnerability, security analysts must frequently decide its presence in real-world software in exe-
cutable format [20]. Binary code matching also helps discover code clones and algorithm plagia-
rism [60, 76, 98].

The Al community has made major advancements in deep learning and representation learn-
ing [29, 70, 88]. For example, to compare two natural language sentences, instead of explicitly
specifying features in sentences for comparison, representation learning trains a model to learn
the most representative aspects from sentences for comparison gradually. Typically, representation
learning computes a numeric vector, termed embedding, for each input, and the cosine distance of
two embeddings determines the similarity of two inputs. Representation learning has been widely
used to understand natural language text, images, and graphs. Recent research has shown the
feasibility of conducting representation learning over binary code [13, 15, 19, 30, 55, 58, 92, 99].
This was often done by converting basic blocks into numeric vectors and then using graph neural
networks to compute embeddings over program control structures.

Unlike high-dimensional data, such as an image, whose visual appearance are usually sufficient
for similarity comparison, the software is more subtle. Deep learning models may not generate qual-
ity embeddings that faithfully reflect a program’s underlying functionality [85, 87]. Two programs
of different functionalities may look “similar” from the token or graph perspective. Conversely,
two programs may look different due to code obfuscation or compiler optimizations, although
they have identical functionality. These intrinsic obstacles make binary code matching very diffi-
cult, as is demonstrated in Section 3.

Key Idea. We present sem2vec, a tool to compute robust binary code embeddings. sem2vec uses
a hybrid approach by leveraging symbolic execution (SE) and deep learning techniques. In gen-
eral, SE is good at extracting precise semantics-level signatures regarding input/output constraints
and path constraints. However, SE usually suffers from low scalability owing to path explosion
and the large number of symbolic states. Meanwhile, existing deep learning techniques, particularl
masked language models (MLMs) and graph neural networks (GNNs) (or “graph embedding
network” in Gemini’s own terminology [92]), are good at learning a scalable view of code represen-
tations, but generally fail to understand subtle semantics in a precise manner. sem2vec, for the first
time, explores a rational and novel combination of SE and MLM/GNN, which benefits from a syn-
ergistic effect and achieves a highly promising learning quality. sem2vec divides a function-level
CFG into continuous and short traces (i.e., tracelets) and performs SE on the tracelets to compute
precise semantics signatures (i.e., symbolic constraints). We then train MLMs to convert each sym-
bolic constraint into an embedding vector and use GNNs to aggregate tracelet embeddings into a
joint embedding of the entire CFG.

We bridge tracelet embeddings generated by sem2vec with two CFG embedding pipelines,
BinaryAI [93] and Gemini [92]. To evaluate sem2vec, we form a large-scale dataset including
Linux coreutils [4],binutils [3],findutils[6],diffutils [5],0penSSL [10], libtomcrypt [9],
libgmp [7], z1ib [12], and rapidjson [2], with a total of 116,941,424 pairs of assembly functions
for comparison and 713,209,256 assembly instructions. We also leverage a vulnerability database
used in prior works [28, 30] to assess how sem2vec boosts vulnerability search in real-world
executables. First, we compile programs on the 64-bit x86 platform, using two compilers (gcc
and clang) and three optimization levels. We also adopt a common software obfuscator (llvm-
Obfuscator [50]) with four obfuscation schemes. Executables compiled from the same source code
but with different settings (e.g., obfuscations) are substantially changed; nevertheless, sem2vec
generates binary code embedding of high robustness against changes introduced by obfuscation
and optimizations. sem2vec is scalable to complete control-flow graph-level symbolic execution
with about two CPU minutes for an assembly function. Evaluation results show that sem2vec

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:3

Control Flow Graph (CFG) BERT;

HBMP 02,...9 MPNN;
PV-DM; random walk;

push rbp
push rbx

basic block-level
embedding

CFG-level
embedding

bling ret CFG
analysis

Fig. 1. Binary code embedding overview.

achieves the highest top-1 accuracy and outperforms the state-of-the-art tools on 37 of 50 compar-
ison settings including challenging cross-compiler, cross-optimization and obfuscation settings.
For the remaining 13 settings, sem2vec exhibits the second-highest top-1 scores of 12, and all
top-1 scores are close to the best tool, BinaryAI [93]. sem2vec outperforms another recent work,
PalmTree [54], in nearly all settings. sem2vec also effectively augments vulnerability searching
by matching CVEs (e.g., Heartbleed) at top-1 for 11 of 12 cases, outperforming all evaluated tools.
Additionally, to illustrate the generalization of sem2vec toward different graph neural network
backends, different architectures, and more heavyweight obfuscation schemes, we setup evalua-
tions using different graph neural networks (e.g., GTN [96]), virtualization-based obfuscation (pro-
vided by Tigress [17]), and cross-architecture comparisons (i.e., binaries compiled on x86 versus
binaries compiled on aarch64). We show that sem2vec achieves consistently encouraging results
across all the challenging setups. In summary, we make the following contributions:

e We propose a new perspective to computing binary code embedding by learning from pro-
gram semantics. Quality embeddings that are resilient to various challenging obfuscation,
compilation, and optimization settings can be produced.

e We present a practical tool, sem2vec, that performs hybrid analysis by incorporating scalable
tracelet-level SE, MLMs, and GNNs to achieve a synergistic effect. Tracelet-level SE provides
precise semantics signatures at a low cost, and neural models learn more holistic structure-
level representations.

e Our evaluation shows that sem2vec generates high-quality embeddings and is robust in
cross-compiler, optimization, and obfuscation settings. Vulnerability search engines are aug-
mented by sem2vec with much higher accuracy.

Artifact. We provide the artifact of this research at Reference [11].

2 PRELIMINARIES

This section introduces code embedding techniques. Although our example employs binary code,
the general procedure can be used to construct source code embeddings. Nearly all embedding
models compute a standalone embedding for an assembly function [13, 15, 19, 30, 55, 58, 92, 99].
For simplicity, the rest of this section assumes the input executable has only one function.

As seen in Figure 1, binary code embedding usually comprises three steps. The pre-processing
module disassembles the input executable into assembly instructions. The CFG is also recovered
over each assembly function and supplied into the following modules. Then, the basic block em-
bedding module and the graph embedding module collaborate to embed the CFG. The final output
is a graph embedding that represents each assembly function numerically. A well-performing em-
bedding framework can locate and include rich information; two similar assembly functions will
have embedding vectors of a short cosine distance. We now explain each step.

Basic Block-level Embedding. This step often treats machine instructions within each block
as a natural language paragraph, where each instruction i deems a sentence. Instruction opcodes
and operands are considered as words. MLMs, like PV-DM [53], are often used [30]. In general, an

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:4 H. Wang et al.

(a) gecc —0O0 (b) gecc 03 (c) ollvm —O0 —bef (d) ollvm —OO0 -fla

Fig. 2. Motivating example. We compare assembly functions compiled from the same source code in Linux
coreutils [4] chroot. Function _usage_chroot is compiled using gcc -00, gcc -03, LLVM obfuscator ol11lvm
with the control flow flattening -fla option, and ollvm with the bogus control flow -bcf option. For the
latter two cases, we mark the blocks containing user-written code in -, the remaining blocks are generated
by ollvm which make the CFG much complex.

embedding model M}, which extracts tokens from an instruction i and maps i into an embedding
vector v, needs to be trained. To do so, we can iteratively mask one instruction i;, and map other
instructions i € I surrounding i; into vectors v € V. v € V is aggregated to predict i;. The back-
propagated prediction error is used to update M; until saturation. Instead of training M; from
scratch, recent studies fine-tune pre-trained BERT-like [29] language models [93, 94]. sem2vec’s
tracelet-level embedding, as introduced in Section 4.2, is based on pre-trained RoBERTa [57]; how-
ever, by feeding the model with symbolic constraints instead of tokens, we formulate different
pre-training tasks.

CFG-level Embedding. In addition to extracting basic block-level embeddings, the CFG must be
recast numerically. Many GNN models have shown promise on graph classification tasks. A well-
trained GNN model has high expressiveness comparable to that of the Weisfeiler-Lehman graph
isomorphism test [91]; thus, GNN models are capable of supporting tasks like software matching.
Most GNNs belong to the family of message passing neural networks (MPNNs) [38]. A message-
passing phase and a readout phase are both parts of the MPNN standard.

The message-passing phase updates the hidden states at each basic block based on its neigh-
boring nodes. In our case, the “hidden states” are computed embeddings. Typically, the message-
passing phase can take several iterations, and each node’s embedding is gradually updated until it
reaches a fixed point or a pre-defined threshold. The readout phase (also termed the aggregation
phase) then computes a whole graph embedding using a pre-defined readout function, yielding the
final embedding result. To augment CFG embedding, recent work has also used random walks [30].
sem2vec adopts GGNN [56] to aggregate embeddings of each tracelet rather than each basic block
(see Section 4.3 for details).

3 RESEARCH MOTIVATION

Research Challenge. Existing works [30, 61, 93] have provided a solid foundation for computing
high-quality binary code embeddings and enabled downstream security and code analysis tasks.
Section 2 has shown that many works learn from program syntactic-level features, which, although
easily approachable, are not robust to changes in binary code syntax owing to compilation, obfus-
cation, and optimizations.

Figure 2 presents an example in which we compile a piece of source code into four assembly
functions using various compilation/obfuscation settings. Without optimization (Figure 2(a)),
a simple CFG is formed. While applying full optimizations (Figure 2(b)) yields a significantly
more sophisticated CFG. When bogus control flow obfuscation (also termed “opaque predicate”

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:5

in Reference [52]) is applied, an opaque predicate inserts a tautology path condition that is hard
to analyze; however, this condition is always evaluated in one direction at runtime (Figure 2(c)).
Extra “garbage code” (marked in -) can be added in the unreachable branch, thus changing
the visual appearance of the code. Control flow flattening (Figure 2(d)) turns the CFG into a “flat-
tened” structure with blocks containing user-written code organized into “case statements” (see
the three red blocks near the bottom) of a gigantic “switch” statement. Note that the functionality
of the flattened CFG is identical to the non-obfuscated version, but it differs dramatically from
the CFG built with clang -00.

Obfuscation and optimization often introduce challenges to existing DNN-based binary code

embedding tools, given that they extract syntactic- or graph-level information, which does not nec-
essarily reflect the real functionality. The trained embedding models may be vulnerable to assem-
bly codes with similar functionality but differing appearance. We show that modern DNN-based
embedding tools, including BinaryAI [93], ASM2VEC [30], and SAFE [61], compute embeddings of
these assembly functions with a large cosine distance, i.e., they treat these four assembly functions
as highly dissimilar.
Generating Robust Code Embeddings from Symbolic Constraints. In addition to the pros-
perous development of using DNN-based code embedding for binary similarity analysis, another
relevant line of research is to perform rigorous binary equivalence checking, using program se-
mantics constraints, often represented as input-output symbolic constraints, generated by sym-
bolic execution (SE) [24, 26, 37, 49, 59, 63]. Overall, with a pair of symbolic constraints denoting
the input-output relations of binary code (e.g., an assembly function), symbolic execution employs
constraint solving techniques to prove the equivalence of their semantics. Given that the extracted
symbolic constraints are indicators of code functionality rather than syntactic forms, the analysis
results are resilient to challenging settings such as compiler optimizations, cross architecture set-
tings, and even code obfuscation, since these settings change code syntactic form, but retain the
original program semantics.

Overall, this work explores a unique and novel combination to use symbolic constraints, the out-
put of performing symbolic execution toward binary code, as the input of follow-up binary code
embedding learning. We anticipate that when using symbolic execution to extract precise and ro-
bust semantics representation from binary code, the learned code embedding will manifest much
better robustness toward challenges like cross optimization, cross architecture, and obfuscation-
involved binary code comparison. Indeed, we find that semantics extracted by sem2vec’s symbolic
execution module (see details in the next section) can construct embeddings of these code samples
with much higher similarity from the semantics perspective. Overall, given the embeddings gener-
ated by sem2vec, three assembly functions in Figures 2(b), 2(c), and 2(d) appear in top-1 matchings
of the assembly function in Figure 2(a), as will be shown in Section 6.

4 DESIGN

We now introduce sem2vec, a binary code embedding framework that uses both semantic signa-
tures extracted by SE and holistic views learned by MLMs/GNNs. Figure 3 depicts the sem2vec
high-level pipeline. sem2vec first disassembles the input executable. Figure 3(a) shows that for
each assembly function F, sem2vec performs under-constrained SE (USE) [69] from the entry
point of 7 and gradually dissects the CFG of F into tracelets, representing continuous and short
execution traces that are reachable from the function entry point via symbolic execution.! When
traversing each tracelet, USE computes symbolic constraints and collects metadata regarding

!Note that our definition of “tracelets” are different with TRACY [28]; please refer to Section 9 for discussion and comparison
with prior works.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:6 H. Wang et al.

Symbolic state of a tracelet
Symbolic Constraints External Calls

ﬂ Disassembling eax < @ // path fopen
........................ . - - Call stack > 0
USE dissects CFG ecx = edx, + 1 // input-output furite Embedding Vector of 7
H into tracelets
EE @ RoBERTa
.mov ecx, edx ‘ A list of Kembedding vectors | ;)nz»h;;.
5 mbedding
CFGOfF |20 cax, o Tracelet Graph ﬂ HBMP Model GGNN+Set2Set

jl ex4eabcd one node < one tracelet l Embedding vector (length £) | Embedding V, | lor0 |

(a) Tracelet-Based USE (b) Embedding Semantics State of a Tracelet (¢) CFG-Level Embedding

Fig. 3. Workflow of sem2vec. Consistent with most relevant works, we generate an embedding vector for
each assembly function. To ease the presentation, we assume the input executable has one function.

function calls. Figure 3(b) shows a semantics-level feature sample for a tracelet. These features
comprise symbolic constraints, external calls encountered on the tracelet, and call stack informa-
tion. Details of tracelet-based USE are in Section 4.1.

To embed a tracelet’s symbolic state, the key challenge is to comprehend symbolic constraints.
Section 4.2 introduces methods to train a well-performing model, RoBERTa [57], which converts
one symbolic constraint into an embedding vector. We select embeddings of K symbolic con-
straints and use HBMP [79] to compress them into a joint embedding of length L. K and L are
user-configurable hyper-parameters (see hyper-parameter study in Section 6.6). We use one bit to
encode the call stack and one-hot encoding to encode the external calls, both of which are concate-
nated with embeddings of symbolic constraints to build the tracelet embedding.

Tracelets of F form a connected graph G (“Tracelet Graph” in Figure 3) where each node is a
tracelet embedding. As shown in Figure 3(c), we use GNNs to aggregate tracelet embeddings on G.
This way, we generate the embedding of F (see details in Section 4.3).

Application Scope. To support security and code comprehension on legacy code, sem2vec is
primarily designed to compute embeddings for 64-bit x86 executables. The prerequisite is disas-
sembly; sem2vec analyzes disassembled machine code. sem2vec employs a commonly used reverse
engineering and SE engine, angr [75]. angr manifests very-high engineering quality in our usage,
and we assume that disassembling is reliable. We also assume assembly functions are correctly
recognized during reverse engineering [18]. Although our current focus is primarily on x86 64-bit
executable (given its popularity), angr lifts machine code into platform-neutral representation for
symbolic execution. Thus, sem2vec is able to analyze executables on other platforms (e.g., ARM)
as long as angr can lift them. In evaluation, we measure the performance of sem2vec using cross-
architecture settings by comparing executables on x86 with executables on aarch64 architectures;
sem2vec achieves consistently encouraging accuracy. Also, sem2vec does not require symbols or
debug information in executables, and thus stripped executables can also be processed.

4.1 Tracelet-based USE

Algorithm 1 presents our tracelet-based USE, where Traverse CFG is the entry point. sem2vec
performs USE from the entry basic block Beyyry of the target function F (line 23). Subsequently, each
time given a starting block By (line 27), function Traverse_Tracelet traverses the derived tracelets
maintained in Q. When the current traversal has forked over MAX_STATE symbolic states (line 5),
meaning Q is holding MAX_STATE tracelets starting from By, we finish the traversal and collect
the symbolic states (see samples in Figure 3(b)) of each tracelet.

4.1.1 Symbolic_Execution. We perform USE [69]: each time starting from a fresh basic block,
Traverse_Tracelet initializes an empty symbolic state Sy (line 3). When creating Sy, we represent

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:7

ALGORITHM 1: Tracelet-based symbolic execution.

1: function TRAVERSE_TRACELET(By, MAX_STATE)
2: By.has_visited « true
3 So « INIT_SYMBOLIC_STATE(By))
4: Q « {So}
5: while LEN(Q) < MAX_STATE do
6 Onext <« @
7 for each S in Q do
8 if S.current_block # NULL then > S is not terminated.
9: B « S.current_block
10: S’ « Symbolic_Execution(S)
11: if HAs_CoNDITIONAL_TRANSFER(B) = true then
12: (S5, S}) «— FORK(S’) > S’ has two successors.
13: Ohnext < Pnext U {S;s S],}
14: else
15: Shext < S .next_state > S’ has one successor.
16: Onext < Cnext U {S;lext}
17: else
18: Ohnext «— Qnext U {S} > Keep the terminated state.
19: Q ¢ Onext
20: return CONVERT_STATES_To_TRACELETS(Q)
21: function TRAVERSE_CFG(F, MAX_STATE)
22: R« @
23: Bentry < ENTRY_POINT(F)

24: Bgtack <« @
25: PUSH(Bentry, Bstack)
26: while EMPTY(Bjtack) = false do

27: By « Por(Bstack)

28: if By.has_visited = false then

29: T « Traverse _Tracelet(By, MAX_STATE)

30: R—RUT

31: for each T in 7 do > Iterate all collected tracelets.
32: if T.next_block # NULL then

33: PusH(T .next_block, Bgack)

34: return R

the value of each register using free symbols (e.g., edx, in Figure 3(b)), indicating that they have
no associated constraint.

Symbolic_Execution performs SE on block B (lines 9 and 10), where we interpret each machine
instruction and update the symbolic state S into S accordingly. We create new free symbols to
represent the values stored in memory cells in the case that such memory cells are loaded for the
first time and the values stored in them are unknown. This subsumes data loading from function
parameters, stack, heap, and global data. In addition to symbolic values of registers and memory
locations, each symbolic state maintains the path constraint C (e.g., eax < 0 in Figure 3(b)) of the
tracelet, denoting conditions that must be satisfied for execution to the current block B from the
entry point By of the current tracelet.

When function callsites are encountered on the path, we recursively inline callee functions if
they are user-defined functions. Therefore, the path is expanded to subsume other user-defined
functions. We also maintain a call stack so that when encountering a ret instruction, we pop the
latest caller function f and resume SE from the instruction next to the executed callsite in f. The
chosen SE engine, angr, implements some C library functions. However, when the called C library
function is not modeled by angr, we skip performing SE and use a free symbol to denote its return.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:8 H. Wang et al.

4.1.2 Traverse_Tracelet. Starting from block By, Traverse_Tracelet performs a breadth-
first search (BFS) on the CFG.

State Fork. Lines 11-13 in Traverse_Tracelet denote an important scenario, where sem2vec en-
counters a conditional control transfer at the end of block B on a tracelet. For conditional transfers,
sem2vec forks the current symbolic state 5’ of a tracelet into two S/ and S} w.r.t. two successor
blocks B; and Bj, respectively. A conditional transfer increments the number of symbolic states
by one. Suppose the control transfer predicate at the end of B is C,, and the path constraint is C.
Resuming SE on B; yields path constraint C. A C, whereas resuming SE on B; yields constraint
-C. AC.

Maximal Symbolic States. Path explosion is a common issue when performing SE over
CFG [16, 74]. Nevertheless, sem2vec stops symbolic execution whenever the number of symbolic
states exceeds MAX_STATE (line 5). Therefore, our BFS traversal allows maximal MAX_ STATE
tracelets each time, thus mitigating path explosion. MAX_STATE is a hyper-parameter that is
user-configurable. Before returning, we collect the final symbolic states and convert them to cor-
responding tracelets for use (line 20). An alternative to avoid the path explosion is limiting the
length of tracelets, which is used by TRACY [28]. However, we found this method cannot tackle
challenging comparison settings (e.g., binaries obfuscated by control-flow flattening), since
obfuscation techniques frequently modify the structure and insert garbage code. The max length
evaluated by TRACY is 5. A short tracelet likely contains little meaningful information of obfuscated
code.

Tracelet Metadata. As shown in Figure 3, when traversing a tracelet, we also collect metadata,
including whether each tracelet ends within target function F. Inspired by previous research [24],
we also consider external function callsites as critical features. Holistically, compiler optimizations
and obfuscations should not change external function calls to dynamically linked libraries [52].
Hence, we collect external callsites on each tracelet. These metadata contribute to the tracelet-
level embedding, as shown in Section 4.2.

Terminating a Traversal. Tracelet traversal terminates when: (1) sem2vec has reached a ret
instruction in function F; (2) the underlying SE engine, angr, is unable to resolve a code pointer
(e.g., an x86 indirect jump); or (3) the latest symbolic state fork increases the number of symbolic
states into MAX_STATE. For the first two cases, we cannot locate successor blocks (lines 8 and 32
will be “false”). For the third case, we first check whether the call stack is empty. An empty call
stack means that the successor block of a tracelet is still in function F. If so, then we push the
successor block into B,k (line 33). If not, then we backwardly search the maintained call stack
until we find the latest callsite in F. We push the successor block of this callsite in B,k Then,
we re-run Traverse_Tracelet by popping one block By from Bi,ck (line 27).

BFS or DFS. Readers may wonder why sem2vec implements the algorithm with BFS rather
than depth-first search (DFS). We tentatively explored using DFS in our preliminary study,
which was not desirable. The reason is that we seek to extract information from as many paths
as possible to present a comprehensive view of the target function’s semantics. If the analyzed
function has reasonable complexity, then we argue that both BFS and DFS can allow the SE engine
to cover all of its paths smoothly. However, when the target function is substantially complex, a
SE engine equipped with DFS may be frequently trapped in a lengthy path. Most of the efforts
would be spent on such a single (or a few) deep path. As a result, when we have collected sufficient
tracelets (or reaching timeout and terminate the analysis of the target function), most of the
extracted information reflects only a few paths. Our observation shows that this would frequently
undermine the accuracy of follow-up function matching, since other irrelevant paths may be
analyzed for the function in comparison. Then, the covered paths in two functions are simply not

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:9

matched, let alone their extracted symbolic constraints. In contrast, a SE engine equipped with
BFS should manifest much better comprehensiveness, given that it prioritizes to cover as many
paths as possible during the traversal. Notice that our SE engine will not re-visit a block (line 28),
which also augments the path coverage from the implementation perspective.

Unreachable Path Pruning. As aforementioned, when sem2vec encounters a conditional path,
it forks the symbolic state into two, implying both paths are reachable. However, because we keep
track of path constraints C for each tracelet, sem2vec can use the constraint solver (angr uses
Z3 [64]) to conduct on-the-fly unreachable path pruning. Specifically, given path constraint C and
the current predicate C., we check the following two constraints:

(a) CA-Ce,

(b) CACe. W

Equation 1(a) determines whether we can find solutions to execute the false branch (=C.). If
Z3 yields unsat (“no satisfiable solution”), then it implies that the false branch is unreachable.
Equation 1(b) decides whether the true branch (C.) is unreachable. sem2vec skips unreachable
paths and refrains from creating a symbolic state.

Pruning unreachable code reduces the complexity of our analysis. More importantly, it helps to
defeat obfuscation. In general, obfuscation methods tend to generate junk code to some extent [52].
Therefore, when pruning unreachable code, sem2vec becomes more resilient to obfuscation, as will
be seen in Section 6.1.

We also clarify that detecting unreachable code by checking constraints in Equation (1) is not
complete but sound. The reason is that we launch USE to construct path constraints C on a tracelet
until reaching B, which indeed omits all computation from main to this tracelet. Therefore, we
may find satisfiable solutions that are indeed invalid when considering the entire path prefix and
possible constraints over inputs/globals/memory cells from main to B. Therefore, if we are still
unable to find a solution for any constraint in Equation (1), then it implies that the checked path
must be unreachable.

4.1.3 Traverse_CFG. When finishing the traversal of tracelets 7 starting from block By, we
collect the symbolic state of each tracelet for use. We also decide whether each T € T has a succes-
sor block in F where we can re-run Traverse_Tracelet with a fresh symbolic state. All successor
blocks are maintained in R as future inputs of Traverse_Tracelet. Traverse_CFG proceeds un-
til no new starting block can be obtained, meaning that all reachable blocks on the CFG of F
have been covered. Also, we clarify that loops, though pervasively exist, should not be an obstacle
in our analysis. Overall, we observe that the number of states when analyzing a loop can reach
MAX_STATE easily, and since sem2vec with not re-visit a block, sem2vec will not be trapped in
the loop and continue the analysis to the successor statements.

4.2 Tracelet Embedding

Figure 3(b) illustrates the embedding of a tracelet: an embedding is formed by concatenating the
embedding of symbolic constraints, the embedding of external callsites, and one bit denoting call
stack information. For a collection of assembly functions, the number of invoked external functions
(e.g., in standard glibc) is often limited, and we can build a vocabulary. We then apply one-hot
embedding on the set of invoked external functions. In case the number of external functions is
enormous, as a common tactic, users can compress this one-hot embedding design to an embedding
of fixed length with a fully connected (FC) layer. Call stack indicates whether the successor block
of a tracelet belongs to the target function F. Section 4.1.1 states that we inline all encountered

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:10 H. Wang et al.

callees during USE; therefore, some tracelets end with blocks that are not in F. We use one bit to
encode this information.

Performing representation learning over symbolic constraints is generally obscure. It necessi-
tates understanding the semantic-level equivalent/inequivalent relations rather than syntactical
features of constraints. To our knowledge, sem2vec is the first attempt to perform representation
learning directly over symbolic constraints. Each input/output constraint or path constraint is
converted into an embedding vector in a unified manner detailed as follows.

Preprocessing Symbolic Constraints. We first flatten a symbolic constraint through an in-order
traversal to generate a sequence of tokens for each constraint. Constants in symbolic constraints
are typically very sparse, ranging from 0 to 2%*. Hence, directly consuming raw constants during
representation learning can result in enormous numbers of low-frequency words and frequently
encounter the infamous out-of-vocabulary (OOV) problem, which may undermine the subse-
quent learning process. Nonetheless, our empirical findings show that by converting constants
into logarithmically normalized forms, the embedding quality can progressively grow. Hence, a
constant c¢ is converted to 2Llg<] (when ¢ > 0) or 0 (when ¢ = 0). Intuitively, logarithmic nor-
malization can map constants into a small set of distinct values while keeping many important
constants, e.g., 0,1, 204 distinguishable to the model. In contrast, standard “constant normaliza-
tion” may lose considerable expressiveness, because it often converts any constant values into a
unified type symbol (e.g., INT, STRING) [19].

Pre-training Using Whole Word Masking (WWM). We employ WWM to train an embedding
model in an unsupervised manner. Given a preprocessed symbolic constraint C, we randomly mask
15% of tokens x,, in s and obtain C’, e.g., (x1, x2, X3, ...,%,) — (x1, [MASK], x3, ..., x,). We then
leverage RoBERTa [57], a representative instance of the BERT family [29], to perform pre-training
on these masked symbolic constraints. In particular, we let RoOBERTa perform a multi-class predic-
tion task to recover the masked tokens x,, based on the context in C’. The cross-entropy loss (L)
on the prediction is employed as the training objective as follows:

Ly == logP(xm | C'),)

where x,, is the original token that is masked in C. C’ denotes the masked context, which is the
masked symbolic constraint here. The trained WWM can convert C into an embedding vector v
by using the output of mean pooling over token-level embeddings.

Pre-training with Siamese Network. The aforementioned process converts symbolic con-
straints into numeric vectors. However, symbolic constraints carry richer information than plain-
text. In particular, semantics encoded in symbolic constraints have not yet been considered. Recent
studies [70] from the natural language processing (NLP) community also indicate that standard
BERT-like models may primarily use tokens for embedding, instead of extracting a more holistic
understanding from entire sentences (here “sentences” are symbolic constraints).

We construct a Siamese network [70] to train the RoOBERTa model by matching symbolic con-
straints that come from the same line of source code. Therefore, we improve the embedding quality
of syntactically distinct symbolic constraints with identical semantics, which likely occur due to
compiler optimizations or obfuscations.

We first prepare a collection of constraint pairs (fi, fz) by performing SE on assembly code
corresponding to the same line of source code; these assembly codes are generated by compiling
the same program using different compilation settings (i.e., gcc -00, gcc -03). Therefore, each
constraint pair contains two syntactically distinct constraints but with identical semantics. We also
prepare a collection of inequivalent constraint pairs by randomly selecting and pairing constraints.
We use programs from Linux coreutils to form the corpus.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:11

Our embedding model takes these equivalent/inequivalent pairs of symbolic constraints as in-
puts. The model first takes a constraint pair (f1, f2) and yields the corresponding pair of embed-
ding vectors (v;, v;) from RoBERTa. Then, the model leverages cosine similarity as the objective
and trains RoBERTa to force it to group constraints that come from the same line of source code.
RoBERTa is also traind to distinguish constraints with inequivalent semantics. The loss function

is defined as follows:
2
(SRR
Ly =— |-, 3
: Z(|01|><|Uz|) G)

where [is the label denoting whether the constraint pair is equivalent (I = 0) or not (! = 1) and

‘ Uf“le’f) — computes the cosine similarity between the two vectors. This way, our constraint embed-

ding model becomes gradually more resilient toward different syntactical forms of constraints.

Selecting Representative Constraints. Each tracelet’s symbolic state contains several con-
straints representing input/output relations and the path constraint over the tracelet. Here, we
select K representative constraints from the symbolic state: these constraints include one path con-
straint, and input/output constraints over K — 1 registers. Our preliminary experiments show that
the longest symbolic constraints are usually informative enough. Hence, sem2vec selects the em-
bedding vectors corresponding to the longest K — 1 symbolic constraints. K is a user-configurable
hyper-parameter.

Given K embedding vectors, we further use HBMP [79], a popular recurrent neural network
(RNN) model that shows encouraging performance in learning distributed representations, to com-
press K vectors into one vector of length L. L is a hyper-parameter. As in Figure 3, this vector is
concatenated with embeddings of external calls and call stack to form the tracelet’s embedding

Viracelet-

4.3 CFG-level Embedding

As aforementioned, tracelets of function /’s CFG forms a connected graph G. Since we have com-
puted an embedding vector for each tracelet (i.e., a node of G), the next step is to compute an em-
bedding of G, denoting the embedding of 7. We reuse a well-performing graph embedding pipeline
proposed in BinaryAI [93] to compute G’s embedding. In particular, we use the GGNN [56] mes-
sage passing scheme to iteratively update each embedding vector Viyacelet based on its neighboring
nodes. Then, we use Set2Set [82], a graph pooling scheme, to aggregate each vector Viracelet into a
unified embedding vector V. V is the embedding of G. We clarify that in the current implementa-
tion, |V| is 256, the same as the BinaryAI’s function embedding size. BinaryAI ships with circle
loss [78], a common loss function, to form the learning objective for training.

Design Decision. BinaryAI uses BERT [29] to produce token-level embedding, whose output is
fed to HBMP for block-level embedding and then for graph embedding. Therefore, by replacing
BinaryAI’s token-level embedding with sem2vec, we present an ablation evaluation to better un-
derstand the strength of learning from semantics. Section 6.1.1 empirically shows that compared
with BinaryAI, learning from semantics is generally more accurate.

Moreover, it is feasible to adopt some other graph-level embedding methods [66, 89, 97], which
might potentially enhance sem2vec to a certain extend. In Section 6.4, we replace the graph em-
bedding modules of BinaryAI with another graph embedding model, Gemini [92]; we constantly
achieve promising results and outperform the state-of-the-art (SOTA) model PalmTree [54],
which is also based on Gemini. Overall, sem2vec aims to provide a practical embedding pipeline
for x86 binary code. Designing novel neural embedding models is not our focus. Prior GNNs are
sufficient to compute high-quality embeddings.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:12 H. Wang et al.

5 IMPLEMENTATION

sem2vec is primarily written in Python with about 11K LOC (see its codebase at Reference [11]).
As previously clarified, we adopt a popular binary code analysis platform, angr [75], for disassem-
bling and SE. The current implementation disassembles 64-bit x86 executables in the ELF format.
We implement RoBERTa with Transformers [88] and train it with the official implementation of
Sentence-BERT [70].

sem2vec needs to be bridged with graph-level embedding models to process assembly functions.
We have clarified the implementation details of deploying sem2vec on BinaryAI in Section 4.3. To
illustrate the generalizability of sem2vec, we deploy sem2vec and the SOTA model, PalmTree [54],
on Gemini for evaluation and comparison in Section 6.4. [54] has shown how to deploy PalmTree
on Gemini: PalmTree generates a basic block embedding vector by averaging embeddings of all
instructions in the block with mean pooling. Accordingly, we average the embeddings of four
input-output constraints and one path constraint to get a tracelet embedding vector.

6 EVALUATION

Programs. We use datasets Linux coreutils (verison 8.32), binutils (verion 2.36), diffutils
(verison 3.7), findutils (verison 4.8), OpenSSL (verison 1.1.1h), libtomcrypt (version 1.18.2),
libgmp (version 6.2.1), z1ib (version 1.2.12), and rapidjson (version 1.1.0) for the evaluation. Ex-
isting works [13, 15, 30, 55, 58, 92, 99] also primarily evaluated these datasets or a subset of them.
coreutils, binutils, diffutils, and findutils consist of common Linux utilities with diverse
functionalities such as textual processing and system management. In total, these datasets con-
stitute 116,941,424 pairs of assembly functions (see breakdowns in Table 1) and 713,209,256
assembly instructions in total. In addition, we rebuild a vulnerability dataset used in References
[28, 30], which contains vulnerable samples in real-world software such as FFmpeg and Bash. In
Section 6.2, we show sem2vec can augment vulnerability search over this dataset.

Compiler. We use GNU gcc version 7.5.0 and clang version 4.0.1. We benchmark cross optimiza-
tion evaluation using three optimization levels (-O0, -O2, -O3) of these two compilers.

Obfuscation Schemes. We evaluate a widely used obfuscation framework, the LLVM Obfusca-
tor [50] (version 4.0.1). LLVM Obfuscator (referred to as o11lvm in this article) provides the follow-
ing three popular obfuscation schemes: (1) -sub, denoting instruction substitution that replaces
simple operations (e.g., addition) with semantics-equivalent but syntax-level more complex for-
mats, (2) -bcf, denoting bogus control flow that inserts opaque predicates to protect conditional
branches. Such predicates are usually difficult to evaluate until runtime [52], and (3) -fla, denot-
ing control-flow flattening that changes the structure of the original control flow into a “flattened”
structure. The execution flow is chained by a C switch statement to iterate basic blocks [52].
ollvmisintegrated into the LLVM framework. Hence, three obfuscation methods can be enabled
together when compiling source code using LLVM. We thus prepare the fourth obfuscation scheme
by enabling all three methods together when compiling a program. This scheme is referred to as
~hybrid.
Metrics. We compute the standard top-k accuracy and the Normalized Discounted Cumulated
Gain (NDCG) scores [46]. We compile a program into two versions of executables Bin; and
Bin, using different compilation/obfuscation settings. For each function f; in Bin;, we iteratively
compare it with all functions in Bin,. The correct match of f; should be an assembly function
ftarget in Biny sharing an identical function name with fi. Then, the top-k accuracy is computed
by checking whether f;4r4.: appears in the top-k comparison pairs ranked by their similarity
scores. The similarity score of two assembly functions is from the cosine distance of their
embeddings. The NDCG scores are also computed based on the vectors of similarity scores. Since

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding

90:13

Table 1. Top-1/Top-3/Top-5 Accuracy and NDCG Score Evaluation in Terms of Different Settings

ID

coreutils (444,889 X 6 pairs of Function X Function)

PalmTreep [

BinaryAI

[ASM2VEC

[SAFE

BinDiff

[S RS, BRSO SR R

1)

1

1%}

2

195}

3

1%}

4

195}

5
Se

63.6/78.9/82.3
55.3/71.5/77.2
50.1/67.8/74.4
19.6/33.5/39.0
1.38/3.18/4.98
0.83/2.07/4.15

sem2vecp [
/90.9/93.0
/89.8/92.5
./874/90‘6 .
/87.7/90.0
./75.6/795 .
/71.2/75.9

0.783
0.724
0.690
0.424
0.175
0.163

74.0 /77.6/80.3
73.9 /75.5/79.4
69.3 /74.4/79.1
33.7 /46.8/52.4
35.2 /49.9/55.8
13.3/21.2/26.8

0.816
0.800
0.781
0.529
0.555
0.329

63.3/77.1/80.7
53.7/68.7/75.1
19.3/32.7/37.4
17.3/26.6/31.8
11.5/20.0/25.7
6.95/11.4/13.7

0.763
0.694
0.342
0.300
0.242
0.141

22.2/31.7/37.7 0.422
23.8/36.8/43.1 0.431
22.9/35.3/40.7 0.421
13.8/20.4/25.0 0.337
11.0/15.1/18.9 0.291
5.96/8.27/10.1 0.236

10.9/NA/NA
9.69/NA/NA
11.0/NA/NA
10.5/NA/NA
8.17/NA/NA

NA
NA
NA
NA
NA

13.6 /NA/NA NA

binutils (4,251,844 X 6 pairs of Function X Function)

S
Sz
S3
Sy
Ss
Se

/88.8/92.6 0.865
74.8 /89.2/92.6 0.869
68.3 /84.5/88.9 0.823
[67.2 /83.4/88.3 | 0.814 |
/59.4/65.1
/46.3/52.3

62.4/76.6/80.4
62.4/77.3/82.0
52.3/68.2/74.2
18.8/28.4/33.5
0.49/1.61/2.79
0.39/1.13/2.01

0.764 | 74.7 /87.3/89.6

0770 | /77,6 /89.6/92.0
0.696 | 723 /87.1/89.9 0870

0.386 | 40.0 /52.9/58.0 0.574
0.143 | 36.8 /54.3/60.6 0.576
0.134 | 11.8/18.9/22.9 0.302

64.0/78.5/83.0
59.7/75.2/80.3
56.2/74.5/79.0
50.3/67.4/72.4
36.5/51.8/58.5
17.5 /31.2/37.6

0.778
0.748
0.724
0.663
0.535
0.342

19.3/26.9/32.8 0.383
18.3/27.8/34.6 0.398
17.3/25.5/32.6 0.384
9.95/14.6/18.9 0.296
8.59/10.5/13.7 0.249
5.98/7.30/9.17 0.209

9.30/NA/NA
10.2/NA/NA
9.50/NA/NA
7.23/NA/NA
10.6/NA/NA
10.1/NA/NA

NA
NA
NA
NA
NA
NA

OpenSSL (14,160,169 X 6 pairs of Function X Function)

Si
Sz
Ss
Sq
Ss
Se

61.9 /77.1/81.7 0.770
54.1 /71.1/77.3 0.738
50.1 /65.9/71.9 0.693

[49:7)/66.1/71.7 [01693"

34.1/49.5/56.8
28.7/42.4/49.0
27.8/41.5/47.9
10.9/17.1/20.3

0.548 (1625 /76.5/81.2 [0.796
0.495 || 54.4/70.3/75.9 | 0.743 |
0.488 || 521 /61.9/66.6 [0.713]

0.282 | 26.9/36.8/41.0 0.393

46.8/56.9/60.6
46.2/55.9/59.4
42.3/51.8/55.8
28.9 /36.3/40.0

0.579
0.567
0.532
0.384

27.2/36.5/44.3 0.463
24.7/34.0/41.6 0.451
24.6/32.7/39.5 0.445
11.6/14.5/17.1 0.299

NA
NA
NA
NA

0.148
0.140

[810/44.5/49.8 [0,506 |
[2381/35.1/40.4 [0:434

2.95/3.49/3.92
2.58/3.32/3.62

24.0/37.3/43.2 0.448
8.60 /13.6/16.3 0.243

25.2 /33.0/36.7 0.352
5.1/6.88/8.38 0.088

NA
NA

11.9/14.5/17.1 0.251
6.1/7.99/9.07 0.211

diffutils (30,276 X 6 pairs of Function X Function)

S
Sy
Ss
Sy
Ss
Se

74.5 /86.7/90.7 0.833
77.6 /89.7/92.0 0.847
74.7 /85.6/92.0 0.812

/87.4/92.0
/73.0/80.5

64.5/80.1/86.7
58.4/74.2/78.7
53.9/66.9/70.8
29.2/39.9/46.6
3.37/6.74/10.7
1.69/5.06/6.74

0.799
0.745
0.700
0.505
0.244
0.215

/91.3/93.4
/90.9/93.8
1785 /90.9/92:3

|

53.6 /63.6/68.4 0.686
51.7 /63.2/70.8 0.741
25.4 /39.7/45.9 0.463

58.6/74.9/82.7
49.4/69.2/74.4
43.6/69.8/76.2
41.0/57.1/64.0
29.1/51.4/57.5 0.506
15.5/25.6/31.9 0.309

0.753
0.674
0.643
0.598

39.6/54.1/61.2 0.583
35.6/54.9/63.4 0.591
35.3/52.2/62.4 0.585
20.3/33.4/40.3 0.467
18.1/22.7/27.9 0.396
11.5/14.2/17.6 0.329

24.4/NA/NA
18.7/NA/NA
21.0/NA/NA
21.5/NA/NA
19.8/NA/NA
20.6/NA/NA

NA
NA
NA
NA
NA
NA

findutils (96,100 X 6 pairs of Fi

unction X Function)

N
Sz
S3
Sy
Ss
Se

/85.8/89.7

72.0
/89.0/93.5
/86.8/91.9

/88.1/92.9

59.6/76.4/82.0
51.0/66.6/74.1
48.6/64.5/73.1
21.7/36.2/43.4
2.07/7.93/11.4
1.38/5.17/7.59

0.760
0.693
0.678
0.451
0.225
0.202

/74.5/81.3

/70.1/75.3

/75.2/81.0

|-/81.8/84A0

70.8 /81.4/83.7
67.0 /82.5/85.4
39.5 /40.7/51.3 0.603
37.2 /53.3/61.6 0.664
16.3/24.4/30.4 0.407

0.821
0.841
0.825

45.9/60.2/66.0 0.629
48.5/63.8/70.0 0.660
44.1/60.5/68.3 0.618
34.5/56.0/62.9 0.556
20.6/36.0/45.1 0.407
12.6/22.2/28.3 0.275

32.9/45.1/52.5 0.512
31.7/47.9/53.4 0.530
29.7/44.0/51.1 0.516
18.6/29.5/34.4 0.404
13.9/19.1/23.1 0.335
9.40/13.3/16.1 0.291

15.1/NA/NA
13.8/NA/NA
13.6/NA/NA
18.0/NA/NA NA
17.5/NA/NA NA
21.4 /NA/NA NA

NA
NA
NA

libtomcrypt (283024 X 6 pairs of

Function X Function)

S
Sy
S3
Sy
Ss
Se

[59.9 /77.0/82.2 [0.768 |
[5910/76.7/82.0 [0.765 |
[49:3)/67.0/75.5 0,688 | 47.8/71.7/80.4 0.706
[56:6/72.3/78.2 [0.740' | 23.4 /40.6/51.0 0.486
[2008/45.1/48.1 [0504"| 2.14/6.06/10.2 0.211
[2601/39.5/47.5 [0475 | 1.43/3.57/6.42 0.186

52.9/77.2/85.9
54.9/79.3/86.6 0.762

0.745

53.7 /57.4/66.7 0.650
54.0 /61.7/68.1 0.666
49.2 /58.1/64.7 0.635
18.0/27.8/33.7 0.383
23.6 /37.7/45.0 0.468
5.50/11.2/16.2 0.254

19.8/35.0/41.0 0.391
23.7/41.6/52.4 0.486
20.0/36.2/46.0 0.439
15.9/30.3/40.4 0.371
15.8/28.8/37.0 0.369
7.69 /15.2/20.4 0.193

NA
NA
NA
NA
NA

11.2/23.1/32.1 0.362
11.5/25.7/34.0 0.371
12.7/26.2/32.4 0.372
7.87/16.5/21.6 0.313
5.60/12.1/16.9 0.269
3.18/6.96/10.7 0.216

z1ib (8,836 X 6 pairs of Func

tion X Function)

S

sem2vecp [PalmTreep

[BinaryAI

[ASM2VEC

[SAFE

S
Sz
S3
Sy
S5
Se

[77.4/88.7/91.9 [0.867 | 55.8/74.0/83.1 0751
[710/87.0/90.0 [0:835 | 70.1 /89.6/93.5 0.847
62.3/812/85.5 0.782 | 63.6 /79.2/87.0 [0.801]
[6381/85.5/92.8 [008201| 35.1/62.3/71.4 0.621
[420/68.1/72.5 [0653' | 7.79/19.5/27.3 0340
[348/55.0/62.3 [0586 | 5.19/16.9/19.5 0314

74.9 /87.1/90.0 0.855
69.2/82.6/87.1 0.816
[6401/79.6/84.6 0.787
33.0/47.7/53.8 0.544
32.6/48.4/55.9 0.553
15.2/25.1/30.1 0369

27.9/42.3/52.9
21.3/41.5/51.1
17.0/35.1/43.6
16.4/25.5/27.2
13.3/20.0/29.5
7.89/11.4/16.7

0.494
0.470
0.407
0.291
0.286
0.180

27.7/41.5/52.1 0.519
25.5/47.9/61.7 0.554
29.8/51.1/57.4 0.561
23.4/38.3/50.0 0.498
12.8/27.7/36.2 0.391
9.57/18.1/24.5 0.336

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:14 H. Wang et al.
Table 1. Continued

ID libgmp (210,681 X 6 pairs of Function X Function)
43Sy | 54.0 /74.1/79.1 0.727 |33.6/50.8/61.3 0.570 | 74.9 /87.1/90.0 1 0.855 [20.8/26.2/30.0 0.306/27.1/39.1/46.2 0.479 NA
44|55 | 52.9 /65.6/70.8 0.688 |33.1/50.5/56.5 0.556 | 69.2 /82.6/87.1 0.816 |18.2/22.4/24.9 0.264|30.6/39.1/45.1 0.494 NA
45|53 | 47.3 /62.7/68.8 0.657 |32.3/46.2/54.3 0.541 | 64.0 /79.6/84.6 0.787 |16.0/20.7/21.9 0.231|29.4/37.7/45.8 0.486 NA
46|S, | 53.6 /65.8/70.4 1 0.696 |15.1/25.5/33.9 0.379 | 33.0 /47.7/53.8 0.544 |14.1/16.3/18.8 0.190|24.5/29.4/33.5 0.416 NA
47|Ss | 41.4 /52.3/58.2 0.587 |1.34/3.76/4.57 0.181 | 32.6 /48.4/55.9 0.553 [14.5/17.8/19.0 0.198|20.8/23.9/27.1 0.360 NA
48|Se | 33.8 /46.2/50.1 1 0.521 |1.08/3.23/4.30 0.175 | 15.2 /25.1/30.1 0.369 [11.0/13.0/14.5 0.142|18.0/20.1/23.0 0.320 NA
ID rapidjson (13,225 X 2 pairs of Function X Function). rapidjson is a C++ library.
49(S7 [133.0 /51.3/62.6 0.581 |17.2/31.1/38.5 0.414 | 20.2 /34.1/40.3 0.442 |7.08/13.3/14.2 0.186|18.2/24.8/36.5 0.408| 6.38/NA/NA NA
50(Sg |1 37.4 /53.9/67.8 0.601 [19.7/30.3/41.0 0.444 | 20.9 /32.6/41.1 0.437 [0.97/9.71/10.7 0.101|12.6/26.8/34.6 0.393| 12.8/NA/NA NA

ISettings. S; denotes the comparison between gcc -00 and gcc -03. Sy denotes the comparison between gcc -00
and clang -03. S3, S4, S5, S¢ denotes the comparisons between gcc -00 and ollvm -03, with -sub, -bcf, -fla, and
-hybrid obfuscations, respectively. S; denotes the comparisons between g++ -00 and g++ -03. Sg denotes the
comparisons between g++ -00 and clang++ -03.

We also comparison with the SOTA (DNN-based) binary code matching search tools. Note that sem2vecp denotes
sem2vec + BinaryAI and PalmTreepg denotes PalmTree + BinaryAI. To enhance readability, for each comparison

setting, we mark the | highest top-1/NDCG scores and the second-highest top-1/NDCG scores . _
denote results that, to our best knowledge, need to be excluded to deliver a fair comparison.

functions that have a single tracelet are usually trivial, sem2vec considers functions with more
than one tracelets, For ASM2VEC, PalmTree, and BinaryAI, we consider functions with at least
five blocks, which is taken by ASM2VEC.

Baseline. We compare sem2vec with four SOTA DNN-based binary embedding tools, PalmTree
[54], ASM2VEC [30], BinaryAI [93, 94], and SAFE [61]. We also compare sem2vec with industrial-
strength binary matching tool, BinDiff [1], which features a classic graph isomorphism-based
binary code comparison. As mentioned in Section 4.3, BinaryAI conducts assembly function em-
bedding by computing basic block embeddings with HBMP [79] and then conducting graph em-
bedding with GGNN/Set2Set [56, 82].

PalmTree [54], denoting the SOTA work, provides a novel language model for x86 machine
instruction embedding. PalmTree features a flexible self-supervised training procedure over unla-
beled assembly code. Its instruction representation is shown as effective over popular downstream
tasks like code similarity analysis, function prototype inference and static analysis. PalmTree fo-
cuses on computing a high-quality embedding of machine instructions. It uses mean pooling for
basic block-level embedding, and Gemini [92] for control graph (function)-level embedding. We
follow its paper to equip PalmTree with mean pooling for basic block embedding. As for graph-
level embedding, we consider two configurations by using BinaryAI and Gemini. These two im-
plementations are referred to as PalmTreep and PalmTreeg in the evaluation, respectively. Note
that PalmTree is an instruction embedding generation tool that is not fine-tuned; we do the same.
That is, sem2vecp and sem2vecg employ pre-trained RoBERTa as symbolic constraint embedding
tool without fine-tuning.

ASM2VEC generates assembly function embedding using an extended PV-DM MLM [53] and
GNNs. We set up its official client, which requires IDA-Pro. However, ASM2VEC does not provide a
pre-trained model to reproduce its reported results. We follow the description in its paper to build
the indexing dataset with binaries (e.g., coreutils) compiled using -O0. We use all its default set-
tings. SAFE is based on self-attentive neural networks. It treats the instruction sequence as a natural
language corpus. SAFE applies a gated recurrent unit (GRU) RNN on the instruction sequence;
it then uses the attention mechanism to process all GRU hidden states to focus on the portion of
representative binary codes. We get the SAFE results in Table 1 with the officially released model.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:15

Processing Time of SE. Tracelet-based SE can be launched in parallel. sem2vec currently em-
ploys 30 threads. For binary code produced by different compilation settings, sem2vec spends 76.6
to 120.8 CPU seconds to launch SE on average per function; obfuscation notably complicates exe-
cutable, and the processing time is accordingly increased with the extent of obfuscation.

The processing time of sem2vec’s SE module, approximately one to two minutes per function, is
not insignificant. Overall, we observe that SE accounts for the majority of the time cost of sem2vec.
Given that said, we like to highlight that it is technically feasible to parallelize the SE of each
assembly function. In fact, the real time (not CPU time) required to execute a single binary in our
test datasets is typically less than one hour, indicating a reasonable cost. In addition, we clarify that
launching SE for each function is a one-time endeavor. Once the embedding of a function has been
generated, it can be saved to disk, and subsequent comparisons against this function are performed
quickly.

From the implementation perspective, sem2vec is implemented on top of angr, one state-of-
the-art SE engine with active community support and documents. We view this design choice is
reasonable, and aligned with many existing works in this field. Nevertheless, sem2vec is not spe-
cific to angr, and given that angr is implemented with Python, it is deemed as slower than C/C++.
At this step, we tentatively benchmarked an advanced symbolic execution engine, QSYM [95], which
is written in C/C++ and particularly optimized for analysis speed. In short, we find that QSYM is
about 24 times faster than angr, which is consistent with Reference [68]. We conclude, therefore,
that an effective, advanced SE engine can presumably enhance our SE process greatly. However,
we implement the prototype of sem2vec with angr because QSYM was designed primarily for con-
colic execution and it is difficult to expand it for under-constrained SE. That is, it can only analyze
programs from the executable entry point and is unable to start from arbitrary program points
and launch under-constrained SE by modeling all program states using symbols. We leave this
as future work to replace angr with advanced, speedy symbolic engines that support symbolic
execution. Also, our evaluation in this article has shown that sem2vec can scale to large datasets
(e.g., OpenSSL), and therefore, we conclude that sem2vec manifests reasonable scalability toward
real-world, common binary samples.

Training Dataset. To form the training dataset of sem2vec, we compile coreutils and binutils
programs using gcc and clang with two optimization levels (-O0, -O3), in total, four compilation
settings. This setup generates in total 4, 159X 2x 2 functions. As a common step, we randomly split
this collection of functions into nine-fold training and one-fold test datasets. That is, the 1 and
6 comparison settings in Table 1 are using the onefold test datasets. Data in all the other compar-
ison settings are not used for training. We train PalmTreep and BinaryAI with the same setup.

Training Time. Training is done on a server with two Intel Xeon Platinum 8255C CPUs and one
Tesla V100-SXM2 32GB. We report that the constraint embedding phase is trained within 40 h. It
takes 4 h to train BinaryAI and 6 h to train Gemini.

6.1 Evaluation Results

Table 1 reports the evaluation results using different datasets in cross-compiler, cross-optimization,
and obfuscation settings. As aforementioned, we use four obfuscation schemes provided by ol1lvm.
Given that binary code with more intensive optimizations appears less similar to the un-optimized
versions, we conduct a cross-optimization evaluation with the most challenging setup, i.e., com-
paring un-optimized (-O0) code with fully optimized (-O3) code.

Overall, sem2vec manifests high accuracy across nearly all comparison settings. Of 50 chal-
lenging comparison settings, sem2vec yields the highest top-1 scores for 37 comparisons. For
the remaining 13 (50 — 37) comparison settings, sem2vec has the second-highest top-1 scores of

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:16 H. Wang et al.

12 settings. We thus interpret the overall results as highly encouraging, illustrating the high
accuracy and robustness of sem2vec under different challenging settings over different real-world
datasets.

For the OpenSSL evaluation, we exclude the results of BinDiff to enable a fair comparison with
other tools. The reason is that BinDiff will simply match two functions when they have iden-
tical function names. OpenSSL has a shared library whose export table, after stripping, still con-
tains names of most functions. Therefore, BinDiff takes advantage of these function names and
achieves a high accuracy. In Table 1, evaluation using other datasets with comparable complexity
shows that BinDiff is obviously less accurate than modern DNN-based approaches.

We find that cross-compiler/optimization settings (ID 2, 8, 14, 20, 26, 32, 38, 44, and 50 in Table 1),
manifest generally promising accuracy. Note that gcc and clang may frequently use distinct
strategies in optimization and code generation phases [71]. Code optimizations, as illustrated in
our motivating example (Figure 2), also largely complicate the CFG. In particular, while top-1
accuracy is generally below 80%, sem2vec has a higher probability (i.e., over 90% for comparisons
in ID 2, 8, 20, 26, and 38 in Table 1) of placing the correct matches in the top-5 ranked candidates.
In contrast, Table 1 shows that when facing such cross-compiler and cross-optimization settings,
prior tools may perform worse. We compare sem2vec with prior works in Section 6.1.1.

Heavy obfuscation schemes like -f1a can largely complicate the control flow graphs, which im-
poses great difficulty for function matching. Compared with the non-obfuscation cases (ID 2, 8, 14,
20, 26, 32, 38, 44, and 50 in Table 1), sem2vec exhibits lower top-1 accuracy for comparisons involv-
ing -fla. For instance, top-1 accuracy using binutils is reduced to 44.2%. Nevertheless, the top-5
accuracy is largely improved to 65.1%. As expected, ~hybrid denotes the most difficult setting. We
found that this strategy considerably mutates the program CFG. We discover that multiple obfusca-
tion schemes, when being used together, can yield synergistic effects, given that one scheme, e.g.,
-bcf, complicates the CFG and introduces more basic blocks. Therefore, consequence schemes like
-fla can flatten a CFG with more blocks. In some circumstances, ~hybrid obscures the analysis
conducted by sem2vec, and we give further studies of erroneous matchings in Section 8. However,
sem2vec outperforms other programs on all obfuscation strategies, including -hybrid, as other
tools report significantly lower accuracy. Section 6.1.1 discusses these findings.

rapidjson is a C++ library, and we failed to compile it when the obfuscations are en-
abled. Hence, we only provide the comparison results of cross-optimization (ID 49) and cross-
compiler/optimization (ID 50). The accuracies of all works on these two settings are significantly
lower than that of other normally compiled settings (ID 1, 2, 7, 8, 13, 14, 19, 20, 25, 26, 31, 32, 37, 38,
43, 44). We interpret the decrease is primarily caused by the difference of C++ and C code. Note
that our model and all the baseline models are trained using binaries compiled from C source code.
In contrast, binaries compiled from C++ source code often have significantly different external
calls and structures, which impede the comparison of all models. Nevertheless, the performance
of sem2vecg is still much better than other works. This illustrates the advantage of using symbolic
execution to primarily extract semantics constraints for learning and comparison.

6.1.1 Comparison with Prior Works. Table 1 compares sem2vec with other works: BinDiff only
provides top-1 matching for comparison; its performance largely falls behind other modern DNN-
based tools except for highly obfuscated cases (e.g., setting 5), where nearly all DNN-based methods
(except sem2vec) yield low accuracy. SAFE also shows notably less top-k accuracy compared with
other DNN-based approaches.

We clarify that some DNN-based tools are also stated to extract a certain level of program “se-
mantics” (using their own terminology) for comparison. For example, ASM2VEC and BinaryAI ex-
tract program lexical relations between tokens (referred to as “semantics” in their papers) and use

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:17

NLP models to extract a relatively robust representation. Overall, it is shown that these works
facilitate a reasonable enhancement compared with BinDiff, which features classic graph-level
similarity comparison. Nevertheless, Table 1 illustrates that their extracted “semantics” are still
shallow, manifesting lower obfuscation resilience than sem2vec.

Ablation Evaluation between sem2vecy and BinaryAI. As introduced in Section 4.3, sem2vecp
and BinaryAl share the same graph-level embedding implementation. Therefore, comparing
sem2vecp and BinaryAI forms an ablation evaluation that shows the key strength of sem2vecg,
namely, its ability to learn much more robust embeddings. In fact, by replacing the token-level
embedding module in BinaryAI with tracelet-level embeddings computed by sem2vec, we have
observed notable accuracy improvement: sem2vecg outperforms BinaryAI for 20 comparison set-
tings in Table 1, particularly on challenging comparison settings involving -bcf and -fla. For
the remaining settings, sem2vecp also manifests close performance with BinaryAI. As aforemen-
tioned, BinaryAl is trained in an end-to-end manner, whereas sem2vecp uses the pre-trained
constraint embedding generator without fine-tuning. This indicates the potentials of fine-tuning
sem2vecp to improve the accuracy further.

Ablation Evaluation between sem2vecpg and PalmTreep. PalmTree leverages the well-
established BERT [29] language model but is pre-trained with new learning objectives focusing
on the inherent characteristics of assembly language. It is shown that the internal formats, control
flow dependency, and data flow dependency of assembly instructions can be effectively captured
by PalmTree when computing embeddings [54]. This illustrates the strength of tailored assem-
bly instruction-level embedding techniques. Nevertheless, it is shown that sem2vecp constantly
suppresses PalmTreep. We attribute the encouraging results to the precise symbolic constraints
captured by sem2vec. We note that in addition to Table 1 comparing sem2vecp and PalmTreep,
sem2vecg also outperforms PalmTreeg, as will be presented in Section 6.4.

6.1.2 Obfuscation Resilience Analysis. The above comparison depicts the key strength of
sem2vec. We now analyze its resilience in detail and compare it with other works.

Instruction Replacement. o11vm enables instruction-level obfuscation via the -sub option. As
previously clarified, this scheme perturbs the instruction sequences of a basic block by replacing
a statement with one or a sequence of syntactically distinct but semantics-equivalent statements.

As reflected in Table 1, instruction replacement can deceive basic block-level embeddings of
other tools. For instance, ASM2VEC, which primarily treats instructions as “words” [30], shows
a much lower top-1 score (only 19.3 in setting 2) compared with setting 1. However, it is easy
to see that the input/output constraints extracted by sem2vec are not changed. Therefore, node
manipulations would not impede sem2vec.

Similarly, another popular obfuscation scheme, often referred to as “garbage code insertion” [52],
performs semantics-preserving transformations within basic blocks by inserting meaningless in-
struction sequences without perturbing code semantics. While sem2vec is not empirically evalu-
ated against garbage code insertion (011vm does not provide this scheme), we clarify that sem2vec
shall manifest high resilience toward this scheme due to the usage of symbolic execution and con-
straint solving.

Opaque Predicate. This scheme (referred to as -bcf by ol1lvm) inserts new branches guarded by
bogus predicates. Overall, it inserts a tautology path condition hard to analyze; however, this path
condition will always be evaluated in one direction (“true” or “false”) at runtime. This scheme
can generate lots of new blocks and edges. Hence, compared with instruction replacement or
garbage code insertion, this scheme more fruitfully complicates the CFG. Although this scheme can

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:18 H. Wang et al.

introduce relatively high cost, it is shown effective in complicating CFG and impeding binary code
matching [52, 90].

-bcf effectively undermines all prior works, including both BinaryAI and PalmTree. As shown
in Table 1, the top-1 accuracy of BinaryAI on coreutils largely drops from 73.9 to 33.7 when
using -bcf. Similarly, the top-1 accuracy of PalmTree drops from 53.7 to 17.3 when using -bcf. In
contrast, sem2vec shows mostly stable accuracy when -bcf is applied. We find that the garbage
code inserted by -bcf cannot be optimized out by LLVM optimization passes (even under -03);
these garbage codes significantly impede typical binary code embedding tools that are agnostic
toward program semantics (e.g., deadcode). Given that said, sem2vec effectively prunes deadcode
introduced by -bcf during tracelet-based USE. Hence, sem2vec is particularly effective in mitigat-
ing this scheme. We view this evaluation (i.e., the stable accuracy) as a strong evidence to advocate
learning over semantics.

Control Flow Flattening. This scheme “compresses” the CFG into a big “switch” statement. Two
dispatcher blocks are deployed to redirect the execution flow while maintaining the original se-
mantics. We looked into the implementation of this scheme in 0ollvm (enabled by -f1la). Control
flow transfers are redirected to the dispatcher blocks inserted by o11vm. The dispatcher blocks use
a global variable to decide which block to jump next.

sem2vec traverses from the function entry point and always follows the function’s normal exe-
cution flow, reducing the significant complexity created by -f1la. Other tools, however, generally
treat the entire CFG as a “graph.” Thus, a CFG changed by -fla is difficult to match with its ref-
erence. Given that said, sem2vec is relatively less resistant to -fla, because it expands the CFG
with more blocks and path constraints. Our manual study shows that sem2vec can pick different
input-output constraints for use, thus likely resulting in erroneous matchings. Section 8 further
discuss methods to reduce erroneous matchings of large CFGs.

Clarification. We discuss sem2vec’s resilience toward commonly used obfuscations from both
conceptual and empirical perspectives. Under such practical settings, sem2vec delivers highly en-
couraging results. Nevertheless, sem2vec is not designed to be resilient to arbitrary obfuscation
schemes. Adversaries may always develop new obfuscations to impede sem2vec (although the
cost may be high). Consistent with most, if not all, works, we benchmark sem2vec on common
obfuscations instead of extreme cases.

6.2 Vulnerability Function Searching

We launch a case study by applying sem2vec to augment a vulnerability search task toward a
public vulnerability dataset. This application mimics a common security usage scenario: given
an assembly function f from a suspicious piece of executable, we search against a database D of
functions with known vulnerabilities and decide if f can be matched with any function in D.

As with ASM2VEC, we use a dataset D released by Reference [26]. This database contains bi-
nary code samples of eight CVE vulnerabilities. We evaluate seven CVEs, because the other CVE,
venom, requires rebuilding gemu-2. 4.0, which cannot be processed by o11vm. D contains 12 assem-
bly functions of seven CVEs (see Table 2), including the infamous Heartbleed exploiting OpenSSL
crypto library, and Shellshock allowing remote attackers to execute arbitrary commands on the
victim machine. To enhance the difficulty, D also contains 1,225 “negative samples,” denoting as-
sembly functions with no vulnerability. A vulnerability search engine must match vulnerable in-
puts with correct vulnerability samples in D at top-1, without interference from the remainder
(benign) functions.

Table 2 compares sem2vec with two other works using the obfuscation setting ~hybrid. Other
obfuscation settings are also evaluated, with similarly promising findings (see below). Overall, this

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:19

Table 2. Vulnerability Function Search under Obfuscation Setting -hybrid

Vunerability CVE |Software/Version | sem2vecg | ASM2VEC | BinaryAI |PalmTreeg
Bash 4.3 1 1 1 110
Shellshock #1 2014-6271 Bash 4.3.30 1 1 1 77
Bash 4.3 1 1 4 287
Shellshock #2 2014-7169 Bash 4.3.30 1 1 1 933
ffmpeg 2015-6826 ffmpeg 2.6.4 1 1 1 1,345
R ntp 4.2.7 1 1 1 95
Clobberin” Time | 2014-9295 ntp 4.2.8 1 1] 132
OpenSSL 1.0.1e 1 21 4 1,536
Heartbleed 2014-0160 | OpenSSL 1.0.1f 1 17 1 1,454
OpenSSL 1.0.1g 1 27 3 2,743
wget 2014-4877 wget 1.8 1 1 3 801
WSs-snmp 2011-0444 | Wireshark 1.12.8 19/5 >50 1 533

“1” means an input software with a vulnerability can be matched on correct vulnerability samples in the dataset [26] at
top-1. The full output of ASM2VEC is too large to parse; we therefore only report a range “>50.

CVE search study reports encouraging results: for 11 of 12 CVE instances, sem2vec ranks the true
match in top-1. When analyzing another infamous CVE, ws-snmp, sem2vec achieves a lower ac-
curacy (top-19). We find that this vulnerability contains a large CFG, which hinders sem2vec’s
tracelet-based SE. To improve sem2vec’s comprehension over large CFGs, we change the configu-
ration of MAX_STATE from 8 to 16. sem2vec successfully places the true match at top-5 (though
spends about 112% more time). BinaryAI extracts some constant strings in its D. We discuss this
finding further in Section 8.

For three versions of OpenSSL, ASM2VEC, and BinaryAI rank the true match much lower. As a
result, users of ASM2VEC may need to manually compare at least 17 copies of programs in D to con-
firm that a Heartbleed vulnerability exists in the suspicious input. PalmTree generally suffers from
low accuracy for this evaluation. It places the true matches lower than top-100 or even top-1000
for 10 of 12 CVE instances. Note that this is consistent with our observation in Table 1; PalmTree
generally struggles to match obfuscated code samples, whereas program semantics extracted by
sem2vec facilitates much accurate matching in this evaluation.

In addition to Table 2, which reports evaluation results under obfuscation setting ~hybrid, we
further report evaluation results under obfuscation setting -sub (in Table 3), -bcf (in Table 4),
and -fla (in Table 5). In short, sem2vec constantly achieves highly promising results, placing all
true matches at top-1 for comparison settings. This illustrates the high robustness of sem2vec’s
semantics-based approaches. We interpret that sem2vec can effectively augment vulnerability
search tasks in real-world scenarios. In contrast, the SOTA model, PalmTree, makes a consider-
able number of inaccurate matching, particularly for heavily obfuscated binary code like -fla
(in Table 5). For instance, when enabling control flow flattening (Table 5), the true matching is
frequently lower than top-100 to even top-1000. It generally becomes more difficult for users to
identify vulnerabilities from the suspicious inputs, given that their true matches are ranked in such
low positions.

6.3 Cross-architecture Evaluation

As mentioned in our application scope discussion in Section 4, sem2vec is not limited to x86 plat-
forms. The employed symbolic execution engine, angr, is designed for a multi-platform support.
In this section, we assess a challenging comparison setup, cross-architecture binary comparison.
In particular, we compile each program in the coreutils dataset into two binaries on the aarch64

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:20 H. Wang et al.

Table 3. Vulnerability Function Search under the Obfuscation Setting -sub

Vunerability CVE Software/Version | sem2vecg | ASM2VEC | BinaryAI | PalmTreeg
Bash 4.3 1 1 1 1
Shellshock #1 2014-6271 Bash 4.3.30 1 1 1 1
Bash 4.3 1 1 1 1
Shellshock #2 2014-7169 Bash 4.3.30 1 1 1 1
ffmpeg 2015-6826 ftmpeg 2.6.4 1 1 1 1
R ntp 4.2.7 1 1 1 1
Clobberin” Time | 2014-9295 ntp 4.2.8 1]]]
OpenSSL 1.0.1e 1 1 1 1
Heartbleed 2014-0160| OpenSSL 1.0.1f 1 1 1 1
OpenSSL 1.0.1g 1 1 1 1
wget 2014-4877 wget 1.8 1 1 1 1
WSs-snmp 2011-0444 | Wireshark 1.12.8 1 1 1 1
Table 4. Vulnerability Function Search under the Obfuscation Setting -bcf
Vunerability CVE |Software/Version | sem2vecy | ASM2VEC |BinaryAI |PalmTreep
Bash 4.3 1 1 1 1
Shellshock #1 2014-6271 Bash 4.3.30 1 1 1 9
Bash 4.3 1 1 1 1
Shellshock #2 2014-7169 Bash 4.3.30 1 1 1 17
ffmpeg 2015-6826 ffmpeg 2.6.4 1 1 5 387
o] ntp 4.2.7 1 1 1 1
Clobberin” Time | 2014-9295 ntp 4.2.8 1 1] 1
OpenSSL 1.0.1e 1 1 1 549
Heartbleed 2014-0160| OpenSSL 1.0.1f 1 1 1 103
OpenSSL 1.0.1g 1 1 1 65
wget 2014-4877 wget 1.8 1 1 1 67
WSs-snmp 2011-0444 | Wireshark 1.12.8 1 8 1 33
Table 5. Vulnerability Function Search under the Obfuscation Setting -fla
Vunerability CVE Software/Version | sem2vecg | ASM2VEC | BinaryAI | PalmTreeg
Bash 4.3 1 1 1 198
Shellshock #1 2014-6271 Bash 4.3.30 1 1 1 92
Bash 4.3 1 1 3 149
Shellshock #2 2014-7169 Bash 4.3.30 1 1 4 132
fimpeg 2015-6826 | fimpeg 2.6.4 1 1 1 1232
- B ntp 4.2.7 1 1 1 80
Clobberin” Time | 2014-9295 ntp 4.2.8 1 1 1 54
OpenSSL 1.0.1e 1 1 1 1430
Heartbleed 2014-0160| OpenSSL 1.0.1f 1 2 1 1413
OpenSSL 1.0.1g 1 1 1 1425
wget 2014-4877 wget 1.8 1 1 1 944
Ws-snmp 2011-0444 | Wireshark 1.12.8 1 >50 1 533

architecture and the x86 architecture, respectively. We then cross compare the similarity among
each pair of binary code. Table 6 reports the comparison results. We also configure compilers with
different optimization levels to enhance the difficulty. Moreover, we underline that the pipeline
of sem2vec is trained using only 64-bit x86 binaries. Therefore, sem2vec has no pre-knowledge

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:21

Table 6. Top-1/top-3/top-5 Accuracy and the Corresponding NDCG
Score for the Cross-architecture Evaluation Using the
coreutils Dataset and sem2vecp

Comparison Top-1/3/5 | NDCG

gcc -00 vs. gcc -03 78.5/90.9/93.0 | 0.892
gcc -00 vs. aarch64 -03 | 53.0/68.1/73.2 | 0.696
aarch64 -00 vs. gcc -03 46.4/62.9/66.8 | 0.647
aarch64 -00 vs. aarch64 -03 | 68.2/75.2/79.7 | 0.773

Table 7. Generalizability Evaluation Using the OpenSSL Dataset

Obf. Comparison PalmTreeg sem2vecg

gcc -00vs. | AUC Top-1/3/5 AUC Top-1/3/5
NA gcc -03 0.897 8.9/15.5/19.3 | 0.911 | 21.1/29.4/33.8
NA clang -03 0.891 | 7.5/12.7/16.4 | 0.900 | 16.1/23.4/27.1

-sub ollvm -03 | 0.887 | 7.76/12.6/16.7 | 0.884 | 13.7/19.7/22.6
-bcf ollvm -03 0.739 4.1/6.0/7.1 0.889 | 13.9/20.4/24.4
-fla ollvm -03 0.547 2.4/2.8/3.0 0.858 | 10.4/14.8/17.5
-hybrid | ollvm -03 0.519 2.2/2.5/2.5 0.797 | 6.6/9.0/10.8

PalmTrees denotes PalmTree + Gemini and sem2vec denotes sem2vec + Gemini. To
enhance readablility, for each comparison setting, We mark the better results for each
comparison setting in bold.

about the aarch64 platform. Despite this technical challenge, sem2vec manifests a reasonably high
accuracy in matching cross-architecture binaries. This illustrates the strength of generating code
embedding over symbolic constraints (which is mostly platform independent) rather than the un-
derlying assembly syntax, as most prior binary code embedding works do. We believe the drops
in the top-k accuracy as reasonable; the assembly code-level implementation of a function may
change accordingly across different architectures. For example, we find that the same function
may invoke different library functions when being compiled on different architectures. By com-
paring setting gcc -00 versus aarch64 -03 (third row) and aarch64 -00 versus aarch64 -03
(fifth row), the top-1 accuracy rises significantly when two binaries target the same architecture.
Overall, we interepret that sem2vec has manifested an encouraging support for cross-architecture
binary similarity analysis. It is easy to see that training the underlying models of sem2vec with
binaries from various architectures would presumably improve its accuracy; we leave it as a future
work. Also, since the codebase of sem2vec is released [11], audiences can easily re-train sem2vec
with their own binary samples, as long as they are analyzable by angr.

6.4 Generalizability Evaluation

For this evaluation, we aim to benchmark whether sem2vec is general enough to be bridged with
different graph embedding techniques. To this end, we leverage Gemini [92], a control graph-level
embedding framework that is also adopted by PalmTree. Therefore, we set up sem2vecg, by using
Gemini to encode the tracelet-level embeddings generated by sem2vec (implementation details
have been discussed before). We reuse the official implementation of PalmTree (referred to as
PalmTreeg), which is based on Gemini to compare with sem2vecg. The official implementation
ships with two evaluation datasets, OpenSSL and glibc. We note that glibc cannot be compiled
by ollvm. Therefore, we compare PalmTreeg and sem2vecg using OpenSSL in Table 7 in terms of
six comparison settings. Note that PalmTrees computes AUC scores (higher is better). Therefore,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:22 H. Wang et al.

Table 7 reports AUC scores. We also compute top-k scores for each comparison setting as well.
Note that Gemini’s implementation of AUC computation, to our best understanding, is somehow
confusing and potentially buggy.? In short, we re-implement a correct version of AUC metrics for
PalmTreeg and sem2veci when reporting Table 7.

We interpret from Table 7 that sem2vec constantly achieves high AUC scores and outperforms
the SOTA work, PalmTreeg (except the ~sub comparison, where sem2vecg and PalmTreeg have
very close AUC scores). Moreover, sem2vecs manifests higher advantage in terms of the top-k
metrics. Overall, AUC scores (used in the PalmTree paper) denote a generally more lenient metric
than top-k scores. For instance, sem2vecg achieves about two times higher top-1 scores compared
with PalmTreeg for the first three comparison settings. Similar to our observation in Table 1,
sem2vecg shows particularly good accuracy for challenging obfuscated cases, e.g., the top-1 score
of sem2vecgs under the -fla setting is over four times higher than that of PalmTreeg. In short,
Table 7 shows that sem2vec can deliver effective tracelet-level embedding using different graph-
level embedding models and constantly outperform the SOTA work. sem2vec is orthogonal to par-
ticular graph-level embedding models, though sem2vecg is generally less accurate than sem2vecg.

We also explore if recently released graph neural networks can further improve the accuracy
of sem2vec. To this end, we replace the backend of sem2vec, its adopted GGNN, with a recent
graph neural network, Graph Transformer Network (GTN) [96]. GTN is able to generate new
graph structures to identify useful relationships between unconnected nodes. It then learns node
representations on the new graphs. We adapt the official implementation of GTN to our pipeline,
dubbed as sem2vecgrn. The model of sem2vecgry is trained in the same way as the model of
sem2vecp, using coreutils and binutils binary functions compiled with gcc -00/02/03 and
clang -00/02/03. Table 8 presents the top-k and NDCG scores of using GGNN and GTN on the
dataset of OpenSSL, findutils, and libtomcrypt, in total of 18 comparison settings. sem2vecp
achieves the higher NDCG scores for 12 settings; however, the scores of sem2vecgry are close.
The differences are less than 0.03 except the -hybrid settings. Therefore, we interpret the usage
of GGNN (released at ICLR 2016) in sem2vec as sufficient, and replacing it with recent advances
in graph neural networks (GTN released at NeurIPS 2019) might not necessarily improve the accu-
racy much. Rather, according our observation in developing sem2vec and experiences in relevant
works like BinaryAI [93, 94], the more important factor that influences the quality of binary code
embedding would be the input of graph neural networks. Given the same input, different graph
neural networks have minor influence on the accuracy, according to our observation and study in
this section.

6.4.1 Heavyweight Obfuscation. We have evaluated sem2vec using a popular obfuscation,
ollvm, in Table 1. Overall, while o11vm is frequently used in existing works in this field to assess
the obfuscation resiliency, we admit that its offered transformation schemes may not be highly in-
tensive. Thus, this section explores using other popular obfuscation schemes to study the resiliency
of sem2vec. To this end, we employ another commonly used obfuscator, Tigress [17]. Tigress is
an obfuscation framework over C code. We clarify that this framework provides a number of ob-
fuscation schemes, where most of them appear to have comparable obfuscation strength to o11vm.
Nevertheless, Tigress provides two well-known heavyweight obfuscation methods, control-flow
flattening and virtualization-based obfuscation. Our investigation shows that the control-flow flat-
tening scheme of Tigress is similar to that of ollvm. In contrast, the virtualization-based obfus-
cation is highly complex. Overall, virtualization-based obfuscation [25] transforms each function

%See the relevant code snippet at: https://github.com/xiaojunxu/dnn-binary-code-similarity/blob/8552d5b7a35095d901e
6e3b3aec62bdc3ald884e/utils.py#L159.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

https://github.com/xiaojunxu/dnn-binary-code-similarity/blob/8552d5b7a35095d901e6e3b3aec62bdc3a1d884e/utils.py#L159.

sem2vec: Semantics-aware Assembly Tracelet Embedding

Table 8. Generalizability Evaluation Using Recent Advanced Graph Neural Network Models

ID OpenSSL (14,160,169 X 6 pairs of Function X Function)
Obf. Comparison sem2vecg Sem2vecgrN
gcc -00 vs. Top-1/3/5 NDCG Top-1/3/5 NDCG
NA gcec -03 61.9/77.1/81.7 0.770 61.7/78.3/83.0 0.773
NA clang -03 54.1/71.1/77.3 0.738 64.2/80.4/85.6 0.792
-sub ollvm -03 50.1/65.9/71.9 0.693 47.1/63.4/70.0 0.658
-bcf ollvm -03 49.7/66.1/71.7 0.693 45.9/62.5/68.8 0.649
-fla ollvm -03 31.0/44.5/49.8 0.506 28.6/42.2/47.4 0.484
-hybrid ollvm -03 23.8/35.1/40.4 0.434 19.1/28.3/33.1 0.373
ID findutils (96,100 X 6 pairs of Function X Function)
NA gcec -03 72.0/85.8/89.7 0.845 71.4/86.1/89.8 0.842
NA clang -03 76.5/89.0/93.5 0.863 71.8/85.3/89.1 0.842
-sub ollvm -03 69.4/86.8/91.9 0.834 71.1/83.8/89.5 0.839
-bcf ollvm -03 75.8/88.1/92.9 0.859 70.7/84.6/88.7 0.837
-fla ollvm -03 61.9/74.5/81.3 0.770 65.4/76.7/82.0 0.788
-hybrid ollvm -03 59.0/75.2/81.0 0.732 53.0/69.2/73.7 0.707
ID libtomcrypt (283,024 X 6 pairs of Function X Function)
NA gcec -03 59.9/77.0/82.2 0.768 58.6/76.2/80.9 0.755
NA clang -03 59.0/76.7/82.0 0.765 63.6/80.9/86.2 0.795
-sub ollvm -03 49.3/67.0/75.5 0.688 53.6/68.7/78.1 0.717
-bcf ollvm -03 56.6/72.3/78.2 0.740 50.8/68.7/74.6 0.704
-fla ollvm -03 29.8/45.1/48.1 0.504 27.6/40.4/45.1 0.482
-hybrid ollvm -03 26.0/39.5/47.5 0.475 19.4/31.7/36.7 0.412

We use the OpenSSL, findutils, and libtomcrypt datasets. sem2vecp denotes sem2vec + BinaryAI and
sem2vecgTN denotes sem2vec + GTN. To enhance readablility, for each comparison setting, We mark the
better results in bold.

into bytecode executing within an interpreter attached in the compiled binary code. Note that the
bytecode language can be highly customized and tailored for each individual function. This way,
the bytecode is not human readable, and naturally diversified across different functions and dif-
ferent executables. During runtime, each bytecode statement will be interpreted by the attached
interpreter to conduct the computation. Virtualization-based obfuscation is generally deemed as
one of the most complex obfuscation scheme, which extensively changes the control flow struc-
tures and code presentations.

In Table 9, we evaluate those two obfuscation settings offered by Tigress; aligned with our pre-
vious setup, we also compare the non-obfuscated binary code with its obfuscated version. Here, we
compile all binaries with gcc -02. It is worth noting that due to the high complexity of Tigress’s
setup procedure and its lack of support for the C11 standard, we can only successfully obfus-
cate and compile diffutils(version 3.3), z1ib (version 1.2.12), and gzip [8] (version 1.6). Overall,
Table 9 has shown that sem2vecp can significantly outperform all the other tools for this evalua-
tion. Virtualization-based obfuscation appears to be very effective to undermine the comparison
accuracy of all the tools; nevertheless, sem2vecp still achieves an encouraging accuracy for these
settings. Our inspection shows that sem2vecp’s symbolic execution can reasonably track the in-
terpreter’s execution, and recover symbolic constraints that are correlated or consistent with con-
straints obtained when analyzing the non-obfuscated code. Overall, we interpret the obfuscation
resiliency of sem2vecp is promising over different obfuscation schemes. To further improve the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:24 H. Wang et al.

Table 9. Top-1/Top-3/Top-5 Accuracy and NDCG Evaluation in Terms of Different Settings

diffutils (25,921 X 2 pairs of Function X Function)
Setting sem2vecy [PalmTreeg [BinaryAI [asm2vec [SAFE

Flatten 50.3 /69.6/76.4 1 0.698 | 31.2/47.7/58.1 0.550|17.7/28.6/36.3 0.407| 48.2 /68.7/73.5 0.663 | 23.2/38.4/46.3 0.478
Virtualize | 29.8 /47.2/53.4 [0.519 | 4.62/5.38/6.92 0.212 [5.14/7.07/8.68 0.210| 6.32 /9.89/13.5 0.183| 5.18/5.45/6.81 0.196
z1ib (16,900 X 2 pairs of Function X Function)

Flatten 46.2 /60.0/65.4 10.621 | 34.6 /58.1/69.9 0.614 |23.8/45.1/59.8 0.522| 1.99/44.4/51.0 0.656| 27.7/44.0/56.0 0.525
Virtualize |/ 18.5 /30.0/33.8 1 0.406 | 1.47/3.68/6.62 0.221 |1.64/4.10/5.74 0.213| 0.63/4.43/6.96 0.163| 2.52 /5.03/6.29 0.214
gzip (28,224 X 2 pairs of Function X Function)

Flatten 81.5 /88.7/91.7 1 0.890 | 13.7/20.9/34.0 0.389(17.6/33.0/39.4 0.430| 33.1/51.0/56.1 0.510| 33.2 /52.1/58.9 0.572
Virtualize | 38.7 /49.4/56.5 | 0.568 | 8.50/8.50/9.15 0.254(11.7/12.8/13.3 0.279| 6.56/7.79/11.9 0.158| 13.6 /15.1/16.7 0.283

To enhance readability, for each comparison setting, we mark the | highest top-1 scores and the

second-highest top-1 scores .

Table 10. Contributions of
Different Semantics Features

S1 S2 S3 S4 | Default
0.048 | 0.385 | 0.552 | 0.771 0.787

accuracy of analyzing virtualization-based obfuscation, we envision the necessity of designing
interpreter-aware symbolic execution engines, for instance, jumping over interpreter’s routine
code during the symbolic execution and only analyzing the semantics of the bytecode. We leave it
as one future work to explore.

6.5 Contribution of Semantics-level Features

Our evaluations show that sem2vec manifests promising performance and high robustness, partic-
ularly over high-optimized and obfuscated cases. This step aims to understand which semantics-
level features primarily contribute to the high quality of computed embeddings. In particular, Con-
sidering the extracted semantics-level features in Figure 3, we set up four settings: (1) S1 nullifies
contribution of semantics but reserves only graph structures, (2) S2 nullifies contribution of sym-
bolic formulas, (3) $3 nullifies contribution of external calls, and (4) S4 nullifies contribution of
call stack status (whether the tracelet ends in a callee). We then compare these four settings with
the default configuration of sem2vec. We re-use the model trained for the experiment of Table 1,
and run the evaluation of cross-compiler/optimization using the coreutils dataset (i.e., the first
setting in Table 1). We report the top-1 average accuracy of each setting in Table 10 and compare
it with the default setting of sem2vec.

$1 shows much lower accuracy compared with the other settings, indicating that semantics fea-
tures notably improve the embedding quality. S2 implies that symbolic formulas contribute about
40.2% (78.7% — 38.5%) of the overall embedding, whereas $3 implies that external calls contribute
about 23.5% (78.7% — 55.2%). S4 shows that one-bit call stack status can help our model in several
edge cases. Overall, we deduce that features selected by sem2vec are all important to describe the
program semantics and facilitate the generation of high-quality embedding.

6.6 Hyper-parameter Evaluation

sem2vec has three hyper-parameters: (1) K, denoting the extracted K — 1 input-output constraints
(together with one path constraint) from a tracelet’s symbolic state (Section 4.2), (2) L, representing
the size of the function embedding vector (Section 4.2), and (3) MAX_STATE, denoting the maxi-
mal symbolic states maintained during USE (Section 4.1). We assess how different hyper-parameter

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:25

Table 11. Top-1 Accuracy using
Different Hyper-parameter Values

K 1 3 5 7
0.710 | 0.750 | 0.765 | 0.713
I 192 384 768 | 1,536
0.723 | 0.723 | 0.765 | 0.643
4 8 16 32
MAX_STATE 0.720 | 0.765 | 0.732 | 0.680

The default setting of these three hyper-parameters are 5,
768, and 8, respectively.

values can influence sem2vec. For this evaluation, we compute the top-1 accuracy by averaging ac-
curacy scores over all cross-compiler and cross-optimization settings using the coreutils dataset.

Table 11 confirms that when K = 5, sem2vec produces embeddings of plausibly better quality.
Similarly, L = 768 is empirically shown as optimal compared with others. MAX STATE = 8
achieves the best accuracy, but the results when MAX_STATE = 4 and 16 are also promising.
Note that a smaller MAX_STATE can lower the cost of SE, and the case study in Section 6.2 also
illustrates that a larger MAX_STATE may enhance the accuracy of certain real-world cases with
large CFGs. However, setting MAX_STATE = 16 takes approximately 45% more time to finish all
SE per function. In short, we interpret that the current hyper-parameter settings in sem2vec are
reasonable, and users may fine-tune certain hyper-parameters according to their specific usage
scenarios, e.g., increasing MAX_STATE to handle some complex edge cases.

7 DISCUSSION OF EFFECTIVENESS

We present further discussion, from a qualitative perspective, about the effectiveness of sem2vec
and explain why it can outperform other SOTA works, especially when the target binary is ob-
fuscated. Holistically, compared with BinaryAI, sem2vec merely changes the inputs but achieves
a much better performance. Therefore, we focus on explaining the quality of collected features
of sem2vec, i.e., the inputs of GGNN model, rather than the model itself, its accompanied read-
out function (i.e., Set2Set), or the training approach (i.e., circle loss). As shown in Figure 1, the
input for the graph embedding model can be separated into the semantics features (e.g., feature
vectors of instructions) and structural-level features (e.g., CFG). Thus, we explain the effectiveness
of sem2vec from these two aspects.

7.1 Semantic Features

sem2vec relies on the SE engine angr to collect the symbolic constraints first, then uses de facto lan-
guage embedding model to compute the embedding vectors of those symbolic constraints. To make
the SE process scalable, we design our specific traversing algorithm with the under-constrained
symbolic execution technique. In addition to scalability, generating high quality constraint em-
bedding is an open problem that is rarely studied in existing works, to the best of our knowledge.
Note that the source code is compiled using different optimization and even obfuscation settings,
such that the generated constraints “look different,” but have identical semantics. For example, an
multiply statement in C code may be frequently optimized into a left shifting assembly instruction,
as bit shifting is usually rapid on CPUs.

To embed constraints, besides the standard whole word masking task, we design another task,
i.e., matching symbolic constraints that come from the same line of source code, as noted in Sec-
tion 4.2. The constraints are collected from binaries compiled with gcc -00 and gcc -03. With

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:26 H. Wang et al.

the debug information, we can link the symbolic constraints and their corresponding source code.
From a holistic perspective, this novel pre-training task helps our model learn the knowledge of
compiler optimizations, such that the embedding vector of the constraint (derived from exten-
sively optimized code) is compelled to be close to the vector of its un-optimized version. With this
improvement, we report that the predicting accuracy increases from 74.5% to 90.1%.

Overall, we admit that some symbolic constraints collected by symbolic execution may look
distinct, even if they share identical semantics. From a holistic view, generating closely identical
embeddings for symbolic constraints with identical semantics is inherently difficult, because
the embedding models do not “understand” the semantics encoded in constraints. In addition
to the solution mentioned above, we anticipate that using constraint solvers can help us rule
out constraints look similar but indeed not semantics equivalent (and vice versa). That is,
conceptually, employing constraint solving can facilitate annotating training data samples in an
atuomated manner. We, however, did not take this approach, because it is too expensive. As stated
in Reference [59], proving the equivalence of two arbitrary symbolic constraints may require
iteratively check all permutations of symbolic variables.

Overall, we argue that our current solution, i.e., annotating two symbolic constraints as “equiv-
alent” if they are extracted from the same lines of source code, is a domain specific solution with
reasonable cost. Though this approach limits the form of semantically equivalent constraints, we
find this approach is sufficient in our specific task—binary function similarity analysis—which
matches binary functions compiled from the same source code. We leave exploring other methods,
e.g., employing constraint solving or data flow analysis, to annotate equivalent/inequivalent con-
straints as future work. The key challenge is cost, given that we require a considerable amount of
annotated symbolic constraints for training.

7.2 Structure-level Features

Besides the embedded vectors for semantics, the quality of structure-level embedding also primi-
arly influences the accuracy of sem2vec. Most binary code embedding works compute structure-
level embedding on top of CFG [39], since CFG can be extracted efficiently and precisely with
modern reverse engineering frameworks (e.g., IDA Pro). Nevertheless, it is well known that the
CFG is “fragile” to compiler optimizations and obfuscation methods (see Figure 2). The perfor-
mance of BinaryAI and PalmTree on obfuscated comparison settings is generally less promising,
as shown in Table 1. One important design consideration of sem2vec is to avoid the direct usage of
naive CFGs. Instead, sem2vec traverses the CFG and collects tracelets. This way, sem2vec builds
anew graph G, where each node in G is a tracelet (as illustrated in Figure 3). Symbolic execution
on the CFG helps to rule out dead code inserted by obfuscations (Figure 6.1.2), and therefore, we
argue that G serves as a structural representation of the target function that exhibits much better
obfuscation resilience than the original CFG.

For instance, the CFG of ftp_syst in wget changes significantly after applying the -hybrid
obfuscation, as shown in Figures 4(a) and 4(b). This is reasonable, as ~hybrid subsumes all three
obfuscation passes offered by ollvm to transform this function. However, we show that the cor-
responding “tracelet graph” G is nearly identical to the original one, as illustrated in Figures 4(c)
and 4(d). Thus, the generated graph-level embeddings over the tracelet graphs are deemed as re-
silient to challenging settings like heavyweight optimizations and obfuscations.

8 DISCUSSION OF FAILED CASES

This section analyzes false alarms of sem2vec. To ease the analysis, we first define true positive
as we successfully match two assembly functions f and f” compiled from the same source at top-1.
Then, false alarms can be classified as follows:

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:27

A N
AR
TS S\
(a) CFG of clang —O3 (b) CFG of ollvm —O3 -hybrid

Fig. 4. CFG and tracelet-based CFG (TCFG) of ftp_syst. We draw these graphs using the Sygiyama layout
algorithm [77].

Table 12. Distribution of
FP Root Causes

C1 C2 C3
0.346 | 0.439 | 0.215

false positive (FP), which implies that assembly functions f and f compiled from different source
codes are matched at top-1.

false negative (FN), denoting that assembly functions f and f’ compiled from the same source
code are not matched at top-1.

8.1 False Positives

We investigate 200 randomly selected FP cases reported in Section 6 and summarize the following
three FP causes.

C1: f and f have almost identical functionality, except some implementation details are changed.
For instance, function rev_xstrcoll_df_atime and rev_xstrcoll_df_btime only differ in call-
ing function cmp_atime or cmp_btime. Moreover, these two utility functions are mostly identical.
C2: f is matched with f due to inlining, In particular, suppose compiler optimization inlines func-
tion A into a function B and becomes B’. Then, in our evaluation, a true positive indicates that B
is matched with B, as we rely on the debug symbols to determine if two functions are true match.
However, if B’ is matched with A, then it is deemed a FP. We agree that it is general obscure to con-
sider “function matching” when inline is taken into consideration. Nevertheless, a closely related
work, ASM2VEC [30], uses the same criterion. Besides compiler optimizations (particularly -O3) that
actively inline functions, sem2vec also inlines callees encountered during its tracelet-based traver-
sal, as clarified in Section 4.1. Our manual investigation reveals FP cases due to both compiler
optimizations and sem2vec’s traversal.

C3: It is not surprising that as long as sem2vec cannot match f and f” at top-1, we have one FP.
Despite the robustness of semantics learned by sem2vec, there are cases where embeddings of f
and f’ have a longer distance than at least one other pair; see Section 8.2.

We interpret FP still matches functions with close functionality in the case of C1 and C2. In
other words, code matching failures of these two categories can often provide decent information
for real-world applications like code clone detection, vulnerability analysis, and malware cluster-
ing. Among 200 analyzed cases, we show the distribution of FP cases in Table 12, where C1 and
C2 count about 78.5% of “erroneous” matchings. We clarify that the current implementation of
sem2vec aims to deliver a general-purpose framework to match binary code. Users may extend our
released codebase [11] to reduce FP cases. For instance, refraining sem2vec from inlining callee
functions to reduce C2 FPs, though that may potentially undermine identifying true matches in
some cases.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:28 H. Wang et al.

8.2 False Negatives

While largely outperforming the state of the arts, sem2vec can still make FNs. Overall, sem2vec
uses only K symbolic constraints, external callsites, and call stack to encode the semantics of each
tracelet. That is, we sacrifice certain details in code semantics to deliver a practical and efficient
framework. Similarly, after manual study, we find cases where our constraint embedding model
(Section 4.2) treats semantically equivalent constraints as less “similar” by converting them into
embeddings of long cosine distances. This might be due to the inherent limits of neural NLP models.
Additionally, sem2vec is trained with only normal code. Obfuscated code (e.g., -f1a) that largely
complicates the CFG is not included in the training dataset of sem2vec. While this design decision
is aligned with most prior works in this field [30, 54], we find that most FNs of sem2vec are due to
heavily obfuscated cases. From this point, the robustness of sem2vec could be further augmented
by directly training with obfuscated code.

In Table 2, sem2vec failed on the case ws-snmp by putting its true matching at top-19. Our
manual study shows that the employed heavy obfuscation (-hybrid) largely complicates the CFG
by adding many extra paths, and each path also becomes more “lengthy.” In particular, after the first
batch of tracelet-based USE (i.e., executing the Traverse_Tracelet function in Algorithm 1), we find
that all collected tracelets have not reached the first call statement in the ws-snmp case. This way,
while sem2vec can proceed further and traverse the entire CFG eventually, the induced tracelet
graph G (see Figure 3) becomes notably different. Tuning the hyper-parameter MAX_STATE from
its default value 8 to 16 can resolve this issue, as traversing a tracelet can presumably go further
before the maintained symbolic states reach MAX_STATE and terminate this batch of tracelets.
We find that the induced tracelet graph G became succinct after configuring MAX STATE = 16.

It is also possible to enhance sem2vec by designing strategies to look for more informative
constraints. We leave it as one future work to explore using neural attentions [81] to teach sem2vec
to prioritize certain constraints. Also, note that BinaryAI has a decent result in Table 2, especially
for the ws-snmp case. We clarify that the CVE function has a unique integer constant (0x2DE) and
a unique string constant (“pcap”), which are used by BinaryAI as part of features. In contrast,
sem2vec normalizes integer constants (Section 4.2) and omits strings. sem2vec may incorporate
more constants to enhance embedding quality further.

9 RELATED WORK

Section 2 has discussed the common pipeline of binary code embedding, and we analyze their com-
mon limits in Section 3. In this section, we review the techniques of relevant research. A prevalent
idea in present binary code embedding works [30, 31, 93, 99] is to apply techniques of NLP to
machine code. ASM2VEC [30], SAFE [61] and DEEPBINDIFF [31] extend the famous word2vec [62]
models to produce embedding of instructions. BinaryAI tokenizes instructions and trains binary
code embedding models in an end-to-end manner. PalmTree [54] utilizes and augments BERT for
instruction-level embeddings. Typically, after computing the embedding vectors of assembly in-
structions, models like LSTM [42] and HBMP [79] and pooling methods (e.g., average pooling) are
used to compute basic block-level embeddings. The next step is to compute embedding vectors for
assembly functions, given nearly all binary code-level similarity analysis occurs on the function
level. Typically, since basic blocks are not arranged in a linear manner, standard NLP techniques
often fail to be applied directly. To solve this challenge, ASM2VEC decomposes the CFG of a function
into multiple paths. Since the basic blocks on a path are executed sequentially, standard NLP mod-
els can be leveraged smoothly. The state-of-the-art methods, including BinaryAI and PalmTree,
use graph neural networks to compute embeddings of function CFG. Nevertheless, as clarified in
Section 3, the graph structures may be easily changed due to different compilation, optimization,
or even obfuscation settings. As described in Table 1, obfuscations applied on the CFG (i.e., -bcf,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:29

-fla, and -hybrid) reduce their embedding accuracy. SAFE relies on the attention mechanism to
identify the most uncommon sequence of instructions and disregards the structural information.
However, Table 1 shows the top-1 and NDCG scores of SAFE are not as good as other works, since
it utilizes much less information than the other tools.

However, most conventional techniques leverage program syntactic features for similarity anal-
ysis, such as distributions of instructions, opcodes, and system calls [32, 34, 35, 43, 72]. Some works
are built based on a “graph view” by extracting control flow and data flow features for compari-
son [32, 36]. BinDiff, a popular industry tool also evaluated in this works, identifies similar code
components through CFG isomorphism comparison [35]. As shown in Section 6.1.2, such con-
ventional methods suffer from relatively low performance compared with de facto learning-based
methods. Recent studies also point out the key difficulty of extracting proper features w.r.t. diverse
sets of binary code samples [51].

Some similarity (and equivalence) analysis is on the basis of symbolic execution [21, 22, 80] and
constraint solving. Luo et al. [59] log execution traces during profiling and extract symbolic con-
straints for comparison. Nevertheless, this work shares a common limitation with prior dynamic
methods [23, 44, 47, 48, 65, 73, 84, 86] in terms of low code coverage. Wang et al. [83] blend multiple
program execution traces to compute a general and precise program embedding, though it cannot
guarantee covering all functions. Another recent work, Trex [67], leverages MLMs to learn from
function micro-traces. It alleviates the code coverage issue using transfer learning to generalize
knowledge learned over traces.

TRACY [28] decomposes assembly functions also into “tracelets” for comparison. We clarify that
“tracelets” are defined in a distinct manner in TRACY and sem2vec: as aforementioned, tracelets in
sem2vec denote continuous and short execution traces that are reachable from the function entry
point (via symbolic execution). In contrast, tracelets in TRACY denote short sequences of basic
blocks on CFGs. Particularly, CFGs are dissected into so-called 3-tracelets (a 3-tracelet contains
three basic blocks) for matching, despite the fact that some blocks in a tracelet cannot be covered
together during runtime, e.g., the third block is a deadcode. This indicates the low resilience of
TRACY against optimizations or obfuscations. Two follow-up static works, Esh [26] and GitZ [27],
extract strands (i.e., data-flow slices of basic blocks) for comparison. Both methods operate at
the boundaries of a basic block. Obfuscation or optimization settings breaking the integrity of
basic blocks may likely undermine these two methods. We note that none of these three tools are
available for comparison at this point. Moreover, ASM2VEC, which was compared with sem2vec in
Section 6, has reported to outperform Esh [30] largely.

Code Vectors [40] embeds symbolic execution traces extracted from a function, as opposed
to the whole function-level CFG as sem2vec does. The input of Code Vectors is a compilable C
project. After analyzing the source code and splitting the program into procedures, Code Vectors
performs lightweight SE on each procedure to collect symbolic execution traces. Performing cus-
tomized, lightweight SE effectively reduces the amount of tokens to be embedded. Since a trace of
code vectors is a list of abstract statements, a word2vec model is then trained to embed tokens in
each abstract statement by treating a trace as a paragraph. Given that we aim to design sem2vec
to be resilient to obfuscation methods, we underline that such meaningful traces in our context
could be highly lengthy. Furthermore, the amount of execution traces are often far more than that
of the tracelets derived from the CFG, indicating that Code Vectors likely faces the path explosion
problem to some degree.

At this step, we compare sem2vec and Code Vectors empirically. Since the “lightweight
symbolic engine” of Code Vectors is inapplicable to assembly code, we tentatively implemented
the key algorithm of Code Vectors in angr to compare with sem2vec. We unroll loops, skipping
to execute callee functions, and omit using constraint solvers. In short, we find that Code Vectors

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

90:30 H. Wang et al.

Bl Traces/Tracelets
102 4 Time
s Memory
]
e
S 1014
=1
S
=
£

\S

«\659“«\&“00‘ {\«\eo“‘ ‘S\“\ei oy 8 5‘6‘0"‘ 019\,«\ o

Fig. 5. Performance comparison (inflation rates) between sem2vec and our implemented Code Vectors. We
compute the inflation rates in terms of the number of collected traces/tracelets, the processing time, and the
memory consumption. All evaluations are launched on the same machine.

is expensive and less applicable for assembly code. For relatively simple assembly functions with
a small number of execution traces, Code Vectors manifests comparable performance with
sem2vec. Nevertheless, due to various optimizations like function-inlining, loop unrolling, and
tail recursion, assembly functions may be much more complex than their source code versions.
Our evaluation uses ten assembly functions with average to relatively large size (over 50 basic
blocks) from ten coreutils executables. We report that for an assembly function, sem2vec can
collect about 639 tracelets in around 4.5 min with 3 GB of RAM. Note that these 639 tracelets cover
the complete CFG of the assembly function. In contrast, our implemented Code Vectors took
about 28 min and 32 GB of RAM to collect on average 33K traces from each assembly function.?
We find that a significant number of collected traces contain repetitive code blocks. We depict the
results breakdown in Figure 5.

There are also source code embedding works depending on syntax features. Code2vec [15]
and Code2seq [14] rely on the abstract syntax tree (AST) of a function to compute embeddings.
Overall, they flatten an AST into AST paths, then tokenize the AST paths to compute embeddings.
Nevertheless, AST-based methods are not commonly seen in binary code embedding research. We
believe the primary reason is because compilers have discarded lots of syntax-level information
(e.g., variable types, function names), and the structure of binary code can change significantly
due to different compilation configurations (see Figure 2). CC2Vec [41] learns the representation
of software patches without syntax level inputs. Hence, it features the capability of analyzing
buggy code that are not even compilable. The input of CC2Vec is the deleted and inserted code
lines of a patch, and CC2Vec uses a hierarchical attention network to extract features from the
code changes. It is unclear if this hierarchical attention mechanism can manifest high accuracy
in computing binary code embedding, given that SAFE, which also features attention, shows less
accuracy than other SOTA works.

10 CONCLUSION

We presented sem2vec, a tracelet embedding framework learning over semantics. sem2vec em-
ploys both SE and MLM/GNN techniques to achieve a synergistic effect in extracting high-quality

3We stop collecting traces of a function when we have collected 50K traces.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:31

and scalable code semantics representations. Our evaluation shows that sem2vec can generate
code embeddings that are robust to diverse compilation, optimization, architecture, and obfusca-
tion settings. sem2vec also augments security applications using its quality embeddings.

ACKNOWLEDGMENTS

We are grateful to the associate editor and anonymous reviewers for their valuable comments. All
correspondence should be addressed to Shuai Wang at the address shown on the first page of this

article.

REFERENCES
[1] 2014. BinDiff. Retrieved from https://www.zynamics.com/bindiff.html.
[2] 2016. RapidJSON. Retrieved from https://rapidjson.org/.
[3] 2022. Binutils. Retrieved from https://www.gnu.org/software/binutils/.
[4] 2022. Coreutils. Retrieved from https://www.gnu.org/software/coreutils/.
[5] 2022. Diffutils. Retrieved from https://www.gnu.org/software/diffutils/.
[6] 2022. Findutils. Retrieved from https://www.gnu.org/software/findutils/.
[7] 2022. GMP. Retrieved from https://gmplib.org/.
[8] 2022. Gzip. Retrieved from https://www.gnu.org/software/gzip/.
[9] 2022. libtomcrypt. Retrieved from https://github.com/libtom/libtomerypt.

[10] 2022. OpenSSL. Retrieved from https://www.openssl.org/.

[11] 2022. sem2vec Artifact repos. Retrieved from https://github.com/sem2vec.

[12] 2022. zlib. Retrieved from http://zlib.net/.

[13] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning to represent programs with graphs.
Retrieved from https://arXiv:1711.00740.

[14] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Generating sequences from structured repre-
sentations of code. Retrieved from https://arXiv:1808.01400.

[15] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2Vec: Learning distributed representations of
code. Proc. ACM Program. Lang. 3, POPL (Jan. 2019).

[16] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A survey of sym-
bolic execution techniques. ACM Comput. Surveys 51, 3 (2018), 1-39.

[17] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander Pretschner. 2016. Code obfusca-
tion against symbolic execution attacks. In Proceedings of the 32nd Annual Conference on Computer Security Applica-
tions. 189-200.

[18] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley. 2014. ByteWeight: Learning to rec-
ognize functions in binary code. In Proceedings of the USENIX Security Conference.

[19] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural code comprehension: A learnable repre-
sentation of code semantics. In Proceedings of the 32nd Annual Conference on Neural Information Processing Systems
(NIPS’18).

[20] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Automatic patch-based exploit generation is
possible: Techniques and implications. In Proceedings of the IEEE Symposium on Security and Privacy (SP’08). 143-157.

[21] Cristian Cadar. 2015. Targeted program transformations for symbolic execution. In Proceedings of the 10th Joint Meet-
ing on Foundations of Software Engineering. 906-909.

[22] Cristian Cadar, Daniel Dunbar, Dawson R. Engler, et al. 2008. KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08).

[23] Silvio Cesare and Xiang Yang. 2012. Software Similarity and Classification. Springer Science.

[24] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. 2016.
BinGo: Cross-architecture cross-OS binary search. In Proceedings of the Foundations of Software Engineering Conference
(FSE’16).

[25] Christian Collberg. 2021. The Tigress C Diversifier/Obfuscator—Virtualization. Retrieved from http://tigress.cs.
arizona.edu/transformPage/docs/virtualize/index.html.

[26] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical similarity of binaries. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’16).

[27] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of binaries through re-optimization. In Proceedings of

the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’17). 79-94.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

https://www.zynamics.com/bindiff.html
https://rapidjson.org/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/findutils/
https://gmplib.org/
https://www.gnu.org/software/gzip/
https://github.com/libtom/libtomcrypt
https://www.openssl.org/
https://github.com/sem2vec
http://zlib.net/
https://arXiv:1711.00740
https://arXiv:1808.01400
http://tigress.cs.arizona.edu/transformPage/docs/virtualize/index.html

90:32 H. Wang et al.

[28]

Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’14). ACM, 349-360.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional

[30]

[31]

[32]

[33]
[34]
[35]
[36]

[37]

transformers for language understanding. Retrieved from https://arxiv.org/abs/1810.04805.

S. H. Ding, B. M. Fung, and P. Charland. 2019. Asm2Vec: Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization. In Proceedings of the IEEE International Symposium on
Security and Privacy (S&P’19).

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DEEPBINDIFF: Learning program-wide code represen-
tations for binary diffing.

Thomas Dullien and Rolf Rolles. 2005. Graph-based comparison of executable objects. In Proceedings of the Information
and Communications Technology Security Symposiumsécurité des technologies de I'information et des communications
(SSTIC’05).

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2008. A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. (2008).

Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE: Efficient cross-architecture identi-
fication of bugs in binary code. In Proceedings of the Network and Distributed System Security Symposium (NDSS’16).
Halvar Flake. 2004. Structural comparison of executable objects. In Proceedings of the Conference on Detection of Intru-
sions and Malware Vulnerability Assessment (DIMVA’04).

Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection of semantic clones. In Proceedings of the 30th
International Conference on Software Engineering (ICSE’08). ACM, 321-330.

Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically finding semantic differences in binary
programs. In Proceedings of the International Conference on Internet Computing for Science and Engineering (ICICSE 08).

[38] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural message passing

[39]

for quantum chemistry. In Proceedings of the International Conference on Machine Learning (ICML’17).
Irfan Ul Haq and Juan Caballero. 2019. A survey of binary code similarity. Retrieved from https://arXiv:1909.11424.

[40] Jordan Henkel, Shuvendu K. Lahiri, Ben Liblit, and Thomas Reps. 2018. Code vectors: Understanding programs

[41]

[42]
[43]

[44]

through embedded abstracted symbolic traces. In Proceedings of the 26th ACM joint Meeting on European Software
Engineering and Symposium on the Foundations of Software Engineering. 163—-174.

Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. Cc2vec: Distributed representations of code changes.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 518-529.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735-1780.
Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. 2009. Large-scale malware indexing using function-call graphs. In Pro-
ceedings of the ACM Conference on Computer and Communications Security (CCS’09).

Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. Cross-architecture binary semantics understanding via
similar code comparison. In Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER’16).

[45] Jiyong Jang, Maverick Woo, and David Brumley. 2013. Towards automatic software lineage inference. In Proceedings

[46]
[47]

[48]

[49]
[50]
[51]
[52]
[53]

[54]

of the USENIX Security Conference.

Kalervo Jarvelin and Jaana Kekélainen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. Info. Syst.
20, 4 (2002), 422-446.

Y. C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu. 2015. Program characterization using runtime values and its
application to software plagiarism detection. IEEE Trans. Softw. Eng. (2015).

Yoon-Chan Jhi, Xinran Wang, Xiaoqi Jia, Sencun Zhu, Peng Liu, and Dinghao Wu. 2011. Value-based program char-
acterization and its application to software plagiarism detection. In Proceedings of the International Conference on
Software Engineering (ICSE’11).

W.Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, and P. Narasimhan. 2012. Binary function clustering using
semantic hashes. In Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA’12).
Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-LLVM: Software protection for the
masses. In Proceedings of the ACM Workshop on Software Protection (SPRO’15).

Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2020. Revisiting binary code similarity
analysis using interpretable feature engineering and lessons learned. Retrieved from https://arXiv:2011.10749.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK: Automated software diversity. In
Proceedings of the IEEE International Symposium on Security and Privacy (S&P’14).

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of the
International Conference on Machine Learning. PMLR, 1188-1196.

Xuezixiang Li, Qu Yu, and Heng Yin. 2021. PalmTree: Learning an assembly language model for instruction
embedding.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

https://arxiv.org/abs/1810.04805
https://arXiv:1909.11424
https://arXiv:2011.10749

sem2vec: Semantics-aware Assembly Tracelet Embedding 90:33

[55] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019. Graph matching networks for learning
the similarity of graph structured objects. Retrieved from https://arxiv.org/abs/1904.12787.

[56] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph sequence neural networks. Re-
trieved from https://arXiv:1511.05493.

[57] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. Retrieved from https://arXiv:
1907.11692.

[58] Sifei Luan, Di Yang, Koushik Sen, and Satish Chandra. 2018. Aroma: Code recommendation via structural code search.
Retrieved from http://arxiv.org/abs/1812.01158.

[59] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Semantics-based obfuscation-resilient bi-
nary code similarity comparison with applications to software plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on the Foundations of Software Engineering (FSE’14).

[60] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software and algorithm plagiarism detection. IEEE Trans. Softw. Eng.
43,12 (Dec. 2017), 1157-1177.

[61] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni, and Roberto Baldoni. 2019. SAFE: Self-
attentive function embeddings for binary similarity. In Proceedings of the 16th Conference on Detection of Intrusions
and Malware Vulnerability Assessment (DIMVA’19).

[62] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of words
and phrases and their compositionality. Adv. Neural Info. Process. Syst. 26 (2013).

[63] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-based semantic binary diffing via system
call sliced segment equivalence checking. In Proceedings of the USENIX Security Symposium (USENIX’17).

[64] Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In Proceedings of the International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 08).

[65] Ginger Myles and Christian Collberg. 2004. Detecting software theft via whole program path birthmarks. In Proceed-
ings of the Industrial Simulation Conference (ISC’04).

[66] Feiping Nie, Wei Zhu, and Xuelong Li. 2017. Unsupervised large graph embedding. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence.

[67] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020. TREX: Learning execution semantics from
micro-traces for binary similarity. Retrieved from https://arXiv:2012.08680.

[68] Sebastian Poeplau and Aurélien Francillon. 2019. Systematic comparison of symbolic execution systems: Intermedi-
ate representation and its generation. In Proceedings of the 35th Annual Computer Security Applications Conference.
163-176.

[69] David A. Ramos and Dawson Engler. 2015. Under-constrained symbolic execution: Correctness checking for real code.
In Proceedings of the USENIX Security Symposium (USENIX'15).

[70] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. Retrieved
from https://arXiv:1908.10084.

[71] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Unleashing the hidden power of compiler optimization
on binary code difference: An empirical study. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 142-157.

[72] Andreas Szebjernsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhendong Su. 2009. Detecting code
clones in binary executables. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’09).

[73] David Schuler, Valentin Dallmeier, and Christian Lindig. 2007. A dynamic birthmark for Java. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE’07).

[74] E.]. Schwartz, T. Avgerinos, and D. Brumley. 2010. All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to ask). In Proceedings of the IEEE Symposium on Security and
Privacy (S&P’10).

[75] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State of) the art of war: Offensive
techniques in binary analysis. In Proceedings of the IEEE Symposium on Security and Privacy (S&P’16).

[76] Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, and Baishakhi Ray. 2018. Obfuscation resilient search through executable
classification. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages. 20-30.

[77] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. 1981. Methods for visual understanding of hierarchical system
structures. IEEE Trans. Syst., Man, Cybernet. 11, 2 (1981), 109-125.

[78] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen Wei. 2020. Circle
loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 6398-6407.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

https://arxiv.org/abs/1904.12787
https://arXiv:1511.05493
https://arXiv:1907.11692
http://arxiv.org/abs/1812.01158
https://arXiv:2012.08680
https://arXiv:1908.10084

90:34 H. Wang et al.

[79]
[80]

[81]

(82]
(83]
[84]

(85]

[86]
(87]

(88]

[89]
[90]
[o1]

[92]

[93]
[94]
[95]
[96]

[97]

(98]

[99]

Aarne Talman, Anssi Yli-Jyré, and Jorg Tiedemann. 2019. Sentence embeddings in NLI with iterative refinement
encoders. Natural Lang. Eng. 25, 4 (2019), 467-482.

David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018. Chopped symbolic execution. In Proceed-
ings of the 40th International Conference on Software Engineering. 350-360.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems. MIT Press, 5998
6008.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. 2015. Order matters: Sequence to sequence for sets. Retrieved
from https://arXiv:1511.06391.

Ke Wang and Zhendong Su. 2020. Blended, precise semantic program embeddings. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation. 121-134.

Shuai Wang and Dinghao Wu. 2017. In-memory fuzzing for binary code similarity analysis. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE’17).

Wendong Wang, Joshua Giltinan, Svetlana Zakharchenko, and Metin Sitti. 2017. Dynamic and programmable self-
assembly of micro-rafts at the air-water interface. Sci. Adv. 3, 5 (May 2017), e1602522. https://doi.org/10.1126/sciadv.
1602522

X. Wang, Y. C. Jhi, S. Zhu, and P. Liu. 2009. Detecting software theft via system call based birthmarks. In Proceedings
of the Annual Computer Security Applications Conference (ACSAC’ 09).

Zhihao Wang, Jian Chen, and Steven C. H. Hoi. 2019. Deep Learning for Image Super-resolution: A Survey. Retrieved
from http://arxiv.org/abs/1902.06068. cite arxiv:1902.06068.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language processing. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. Association for Computational Linguistics, 38-45. Retrieved
from https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Zhang Xinyi and Lihui Chen. 2018. Capsule graph neural network. In Proceedings of the International Conference on
Learning Representations.

Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic function detection in obfuscated binaries via bit-
precise symbolic loop mapping. In Proceedings of the IEEE Symposium on Security and Privacy (SP’17). IEEE, 921-937.
Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? Retrieved
from https://arXiv:1810.00826.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural network-based graph embedding
for cross-platform binary code similarity detection. In Proceedings of the ACM Computer and Communications Security
Conference (CCS’17).

Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order matters: Semantic-aware neural
networks for binary code similarity detection.

Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020. CodeCMR: Cross-modal retrieval for
function-level binary source code matching. Adv. Neural Info. Process. Syst. 33 (2020).

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A practical concolic execution engine
tailored for hybrid fuzzing. In Proceedings of the USENIX Security.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. 2019. Graph transformer networks.
Adv. Neural Info. Process. Syst. 32 (2019).

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. 2019. Heterogeneous graph
neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 793-803.

Fangfang Zhang, Yoon-Chan Jhi, Dinghao Wu, Peng Liu, and Sencun Zhu. 2012. A first step towards algorithm pla-
giarism detection. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’12).

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang. 2019. Neural machine translation
inspired binary code similarity comparison beyond function pairs. In Proceedings of the Network and Distributed System
Security Symposium (NDSS’19).

Received 9 February 2022; revised 21 September 2022; accepted 6 October 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 90. Pub. date: May 2023.

https://arXiv:1511.06391
https://doi.org/10.1126/sciadv.1602522
http://arxiv.org/abs/1902.06068
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arXiv:1810.00826

