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ABSTRACT

Neural program embeddings have demonstrated considerable promise

in a range of program analysis tasks, including clone identification,

program repair, code completion, and program synthesis. However,

most existing methods generate neural program embeddings di-

rectly from the program source codes, by learning from features

such as tokens, abstract syntax trees, and control flow graphs.

This paper takes a fresh look at how to improve program embed-

dings by leveraging compiler intermediate representation (IR). We

first demonstrate simple yet highly effective methods for enhancing

embedding quality by training embedding models alongside source

code and LLVM IR generated by default optimization levels (e.g.,

-O2). We then introduce IRGen, a framework based on genetic algo-

rithms (GA), to identify (near-)optimal sequences of optimization

flags that can significantly improve embedding quality.

We use IRGen to find optimal sequences of LLVM optimization

flags by performing GA on source code datasets. We then extend a

popular code embedding model, CodeCMR, by adding a new objec-

tive based on triplet loss to enable a joint learning over source code

and LLVM IR. We benchmark the quality of embedding using a rep-

resentative downstream application, code clone detection. When

CodeCMR was trained with source code and LLVM IRs optimized

by findings of IRGen, the embedding quality was significantly im-

proved, outperforming the state-of-the-art model, CodeBERT, which

was trained only with source code. Our augmented CodeCMR also

outperformed CodeCMR trained over source code and IR optimized

with default optimization levels. We investigate the properties of

optimization flags that increase embedding quality, demonstrate

IRGen’s generalization in boosting other embedding models, and

establish IRGen’s use in settings with extremely limited training

data. Our research and findings demonstrate that a straightforward

addition to modern neural code embedding models can provide a

highly effective enhancement.
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1 INTRODUCTION

Recent developments in deep neural networks (DNNs) have deliv-

ered advancements in computer vision (CV) and natural language

processing (NLP) applications. We have noticed lately an increase

in interest in using DNNs to solve a variety of software engineering

(SE) problems, including software repair [37, 89], program synthe-

sis [14, 54, 71], reverse engineering [78], malware analysis [15], and

program analysis [80, 103]. Similar to how DNNs understand dis-

crete natural language text, nearly all neural SE applications require

computing numeric and continuous representations over software,

which are referred to as program embeddings or embedding vectors.

The common procedure for generating code embeddings is to

process a program’s source code directly, extracting token sequences,

statements, or abstract syntax trees (ASTs) to learn program repre-

sentations [9, 11, 17, 37, 66]. Although some preliminary approaches

have attempted to extract semantics-level code signatures, such ap-

proaches are limited by use of semantic features that are too coarse-

grained [73], low code coverage (due to dynamic analysis) [89],

or limited scalability [90]. To date, learning from code syntactic

and structural information has remained the dominant approach

in this field, and as previous work has argued [27, 82, 88, 90], the

use of features at this relatively “shallow” level is likely to degrade

learning quality and produce embeddings with low robustness.

For some CV and NLP tasks, data augmentation has been pro-

posed as a tool to improve the quality of learned embedding repre-

sentations [30, 79]. These approaches typically increase the amount

of training data by adding slightly modified copies of already exist-

ing data or by creating new pieces of synthetic data from existing

data. Thus, embedding models can be trained on larger numbers

of data samples, resulting in higher-quality embedding representa-

tions. Previous research has shown the value of data augmentation

approaches in increasing embedding quality [29, 53, 57, 64].

This work investigates using compiler intermediate representa-

tions (IR) to augment code embedding. Modern compilers include

numerous optimization flags that can seamlessly convert a piece of

source code into a range of semantically identical but syntactically

distinct IR codes. From a comprehensive standpoint, we argue that

our technique can boost program embedding on two fundamental

levels. First, the translation of a single piece of source code into
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several variants of IR code with the same functionality significantly

increases the diversity of available training data. As previously

noted, such augmented data can commonly improve the quality of

learned embeddings. Second, although programs with the same

functionality may appear syntactically distinct as source code, they

are likely to become more similar after pruning and rearrangement

by optimizations. This alleviates the difficulties imposed by syntax

changes, as the optimizations regulate syntactic characteristics.

We begin by illustrating that using default compiler optimization

levels, such as -O2 of LLVM, can produce IR code that significantly

improves the embedding quality of a popular embedding model,

CodeCMR [100], and outperforms the state-of-the-art (SOTA) model,

CodeBERT [31], trained on source code alone. However, despite

the promising potential in this “misuse” of compiler optimizations,

the high number of available optimization flags and the conse-

quently large search space present a challenge for identifying well-

performing optimization sequences to augment embedding models.

We propose IRGen, a framework that uses genetic algorithms

(GA) to search for (near-)optimal optimization sequences for gener-

ation of IR code to augment program embedding models. Compiler

optimization flags are typically combined to generate machine in-

structions with high speed or small size. In contrast, IRGen targets

optimization sequences, generating IR code that is structurally simi-

lar to the input source code. This prevents over-simplification of the

IR code, which is undesirable in our task since overly-simplified IR

often becomes less “expressive.” Additionally, to maximize learning

efficiency, we limit overuse of out-of-vocabulary (OOV) terms (our

definition of OOV follows ncc [16]; see Sec. 4.3).

We present a simple yet unified extension, through triplet loss [94],

to enable embedding models to learn from source code and LLVM

IR. For evaluation, we used IRGen to analyze IRs generated from

the POJ-104 [66] and GCJ [72] datasets, which include a total of

299,880 C/C++ programs. After 143 to 963 CPU hours of search (we

use a desktop computer to run IRGen), IRGen was able to form

optimization sequences with high fitness scores from the 196 opti-

mization flags available in the x86 LLVM framework (ver. 11.1.0).

To evaluate the quality of embedding, we setup a representative

downstream task, code clone detection. When CodeCMRwas trained

with IR code generated by the identified optimization sequences,

embedding quality (in terms of code clone detection accuracy) sig-

nificantly improved by an average of 11.66% (peaking at 15.46%),

outperforming the SOTA model CodeBERT trained with only source

code (for 12.02%) or CodeCMR jointly trained with source code and IR

emitted by default optimizations (for 5.94%). We also demonstrate

that IRGen is general to augment other neural embedding models

and show that IRGen can almost double the quality of learned em-

beddings in situations with limited data (e.g., 1% of training data

available). We characterize optimization flags selected by IRGen

and summarize our findings. This work can help users take use

of compiler optimization, an out-of-the-box amplifier, to improve

embedding quality. In summary, our contributions are as follows:

• We advocate the use of compiler optimizations for software

embedding augmentation. Deliberately-optimized IR code

can principally improve the quality of learned program em-

beddings by extending model training datasets and normal-

izing syntactic features with modest cost.

• We build IRGen, a practical tool that uses GA algorithms

to iteratively form (near-)optimal optimization sequences.

Additionally, we present a simple yet general extension over

modern code embedding models to enable joint learning

over source code and IR.

• Our evaluation demonstrates highly promising results, with

our augmented model significantly outperforming SOTA

models. We further demonstrate the generalization of IRGen

and its merit in augmenting very limited training data. IRGen

is released at [1].

2 PRELIMINARY

Neural code embedding, as in Fig. 1, converts discrete source code

to numerical and continuous embedding vectors, with the end goal

of facilitating a variety of learning-based program analysis. We

introduce program representations in Sec. 2.1. We examine alterna-

tive model designs in Sec. 2.2 and the concept of data augmentation

for neural (software) embedding in Sec. 2.3.

Figure 1: Common neural program embedding pipeline.

2.1 Input Representation

Code can be expressed as text and processed using existing NLP

models. However, it would be costly and likely ineffective because

programming languages usually contain a wealth of explicit and

sophisticated structural information that is difficult for NLP models

to comprehend [66]. Therefore, modern code embedding models

often learn program embeddings using code structural representa-

tions which are informative. For instance, the abstract syntax tree

(AST) is used to represent code fragments for program embeddings.

Once a code snippet’s AST has been generated, there are several

methods for extracting discrete symbols (e.g., AST nodes) for use

in the subsequent learning process. For example, code2vec [11]

and code2seq [10] extract a collection of paths from AST to form

embeddings, as discussed below.

Control flow graphs (CFG) are also used to form input repre-

sentation, especially when analyzing assembly code. Two repre-

sentative tools, asm2vec [27] and BinaryAI [99], construct CFGs

over assembly code and combine basic block-level embeddings into

the program’s overall embedding. Recent research [8, 16, 36] has

explored the use of hybrid representations that incorporate data

from different layers. For instance, ncc [16] extracts a so-called

contextual flow graph first, which subsumes information from both

control flow graph and data flow graph.

2.2 Neural Model Learning Procedure

NLP models are generally designed to process infinite sequences

of tokens, whereas software is structured. Hence, the neural code
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embedding learning process can be divided into two broad cate-

gories: 1) decomposing program (structural) representations (e.g.,

AST or CFG) into one or multiple token sequences that are then

processed by NLP models; and 2) attempting to initiate an “end-

to-end” procedure for directly learning structural representations

using advanced neural models like graph neural networks (GNN).

CodeBERT is a large-scale SOTA code embedding model that

primarily learns from token-level software representations. It is

inspired by BERT [26], a famous bidirectional natural language em-

bedding model. CodeBERT constructs learning objectives using both

masked language modeling (MLM) and replacement token detec-

tion. Using these objectives, it is trained to predict tokens that have

been randomly masked out of the inputs until saturation accuracy is

reached. Another model, asm2vec [27], uses MLMs, particularly an

extended PV-DMmodel [52], to embed x86 instructions at the token

level. Token sequences can be extracted from tree or graph rep-

resentations. For example, code2vec [11] and code2seq [9] break

AST into paths, transform paths to embeddings using LSTM [42],

and finally aggregate path-level embeddings to produce the AST’s

embedding. The structure-based traversal method [43] converts

ASTs into structured sequences.

TBCNN [67], Great [41] and BinaryAI [99] leverage advanced

models, such as GNNs, to directly process program structural rep-

resentations. BinaryAI [99], for example, uses standard GNNs to

propagate and aggregate basic block embeddings into CFG em-

beddings. Besides CFGs, neural models can create structures with

richer information. ncc [16] forms a contextual flow graph with

control- and data-flow information. Each node in the contextual

flow graph contains a list of LLVM IR statements, which ncc then

transforms into vectors. It further uses a GNN to aggregate the

node embeddings into an embedding of the entire program. As

with ncc, MISIM begins by constructing a novel context-aware se-

mantic structure (CASS) from collections of program syntax- and

structure-level properties. It then converts CASS into embedding

vectors using GNNs. It outperforms prior AST-based embedding

tools, including code2vec and code2seq [9].

2.3 Data Augmentation

Images can be rotated while retaining their “meaning” (e.g., via

affine transformations [104]). Similarly, we can replace words in

natural language sentences with their synonyms, which should

not impair linguistic semantics. Data augmentation leverages these

observations to create transformation rules that can enlarge model

training data.

It is worth noting a conventional technique, namely feature engi-

neering [105], can generally help data science and machine learning

tasks. Feature engineering facilitates to eliminate redundant data

that can reduce overfitting and increase accuracy. Nevertheless, in

the era of deep learning, it gradually becomes less desirable to man-

ually “pick useful features,” given that we need to frequently deal

with high-dimensional data like image, text, video, and software.

How to pick useful features is often obscure when learning from

those complex high-dimensional data. In fact, it has been demon-

strated that data augmentation generally and notably improves

deep learning model performance and robustness, and it has been

frequently employed as a routine technique to enhance modern

Table 1: MAP scores of CodeCMR on POJ-104 [66] for different

input setup.

Setup MAP(%) Setup MAP(%)

Source 76.39 Source + LLVM IR -O2 84.29
Source + LLVM IR -O0 82.90 Source + LLVM IR -O3 84.21
Source + LLVM IR -O1 83.37 Source + LLVM IR -Os 83.81

Source + LLVM IR Optimized by Optimization Sequences Found by IRGen 89.18

deep learning models in a variety of domains [60, 61, 70, 75, 77, 91,

93, 101, 102, 104].

Standard data augmentation approaches, however, are not di-

rectly applicable to enhance program embeddings. Augmenting

neural program embeddings is challenging and under-explored.

Due to the synthetic and semantic constraints of programming

languages, arbitrary augmentation can easily break a well-formed

program. This paper explores bringing data augmentation to source

code. In particular, we advocate employing compiler optimizations

to turn a same piece of source code into semantically identical but

syntactically diverse IR code. Note that we do not need to “reinvent-

ing the wheel” to develop extra semantics-preserving source code

transformations [44]. Instead, we demonstrate how a mature com-

piler can facilitate effective data augmentation simply by exploiting

optimizations developed over decades by compiler engineers.

3 MOTIVATION

The LLVM compiler architecture supports hundreds of optimiza-

tion passes, each of which mutates the compiler IR in a unique

way. To make compiler optimization more accessible to users, the

LLVM framework offers several optimization bundles that a user

can specify for compilation, for example, -O2, -O3, and -Os. The

first two bundles combine optimization passes for fast code execu-

tion, whereas -Os aims to generate the smallest executable possible.

Our preliminary study shows that by incorporating optimized IR

code into embedding learning, the embedding quality can be sub-

stantially enhanced. This section describes our preliminary finding,

which serves as an impetus for the subsequently explored research.

Learning Over Source Code.We use POJ-104 [66], a commonly

used dataset containing 44,912 C programs written for 104 tasks.

This dataset is split into three program sets: one for training, one for

validation, and one for testing (see Sec. 6).We trained CodeCMR [100],

one popular code embedding tool, on the training split, and then

perform multi-label classification on the testing split. CodeCMR gen-

erates code embeddings by first converting source code to a charac-

ter sequence and then computing character-level embeddings. The

embeddings are fed to a stack of Pyramid Convolutional Neural Net-

work (DPCNN) [45], in which an average pooling layer constructs

the program’s embedding. DPCNN has been shown as powerful at

embedding programs. In our evaluation on POJ-104, we observe

promising accuracy in terms of MAP [68] score, as shown in Source

of Table 1. MAP is a commonly used metrics in this field, and a

higher MAP score indicates a greater quality of code embeddings.

As will be shown in evaluation (Table 4), this result is comparable

to those obtained using the SOTA model, CodeBERT.

Findings. Despite the decent results, we find that CodeCMR fails

to group quite a number of POJ-104 programs who belong to the

same class. The POJ-104 C code and corresponding LLVM IR are
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too lengthy to fit in the paper; we present some very readable cases

at [3] and summarize our key observations below.

C/C++ programs implementing the same functionality can ex-

hibit distinct syntactic appearance. For instance, at [3], we present

a case where two programs, 𝑝1 and 𝑝2, are implementing the same
“days between dates” task. We find that 𝑝1 uses one switch state-
ment, whereas 𝑝2 uses a sequence of if statements. Further, 𝑝1
uses many local variables to encode #days in each month, while

those information in 𝑝2 are hardcoded in constants. This way, 𝑝1
and 𝑝2, differ from both control- and data-flow perspectives.

Nevertheless, we find that the LLVM IR code compiled from these

two programs are much closer in both control- and data-flows. Let

𝑙1 and 𝑙2 (see [3]) be two LLVM IR programs compiled from 𝑝1 and
𝑝2 and optimized with optimization level -O3. We find that 𝑙1 and 𝑙2
preserves most of the structure of the source code. More crucially, 𝑙1
and 𝑙2 both use a LLVM IR switch statement to encode the control

structures. Data usage is also regulated, where both local variables

in 𝑝1 and the constants in 𝑝2 become integers hardcoded in IR

statements. The induced IR programs 𝑙1 and 𝑙2 are (visually) very
similar, revealing the true semantics-level equivalence of 𝑝1 and 𝑝2.
We thus suspect that CodeCMR is indeed hampered by too flexible

code representation in C programs. In other words, it is shown as

demanding to explore extracting more robust features from C/C++

code to enhance the learning quality.

Learning over Code Structure or Semantics. As previously

stated, CodeCMR learns on the character (token) sequence. This indi-

cates that CodeCMR is less resilient against changes at the syntactic

level. Graph-level embeddings might be more robust to token-level

changes, given their reliance on the rich structural information

contained in the program. Nonetheless, in real-life code samples,

many changes can also occur at the graph level, and as shown in

Sec. 6, representative graph-level embedding models also perform

poorly on diverse and large-scale datasets, such as POJ-104.

Some readers may wonder if learning directly from code seman-

tics, such as input-output behaviors captured by dynamic analy-

sis [88, 90], is possible. While dynamic analysis can precisely de-

scribe code behaviors (on the covered paths), it suffers from low

coverage. Symbolic execution (SE) [20] is used to include a greater

amount of program activity in applications such as code similar-

ity analysis [59]. Nonetheless, SE is inherently inefficient, where

trade-offs are made to launch SE over real-world software [19, 85].

Learning over IR Code. This paper advocates using compiler IR

to extend model train dataset and enhance code embedding models.

However, we do not suggest learning solely from IR for two rea-

sons. First, compiler optimizations such as static single-assignment

(SSA) [25] result in LLVM IR codes that typically have ten times as

many lines of code (LOC) as the corresponding C source code. This

provides a significant impediment to training embedding models.

In our preliminary study, we find that training embedding models

using LLVM IR code alone resulted in significantly inferior perfor-

mance across multiple tasks and datasets. Second, when outputting

IR code, the LLVM compiler prunes or “obfuscates” certain source

code features such as string and variable names. Note that variable

names and constants are generally crucial to improving embed-

ding quality. Similarly, in LLVM IR code, callsites, particularly to

standard libraries like glibc, are often modified. For example, the

callsite statement in set<int> row; row.insert(x); would be

converted to a complex function name with additional prefixes.

Notably, we should avoid tweaking with or disabling certain “an-

noying” optimization passes (for example, the SSA pass), as many

optimization flags assume the existence of other flags.

Learning Over Source Code and IR Code.We extended CodeCMR

to process IR code emitted by clang. We augmented the frontend

of CodeCMR to process LLVM IRs. We also extended the learning

objectives by requiring CodeCMR to minimize the distance between

the source code and corresponding IR using triplet loss (see Sec. 4.4).

We compiled each test program in the POJ-104 training set into

LLVM IR to train the CodeCMR, and then benchmark the MAP score

using the same setting.

As seen in Table 1, using LLVM IR in the learning process signif-

icantly improved embedding performance. For instance, when com-

piling the source code into LLVM IR with negligible optimization

(-O0), the joint learning enhanced the MAP score by approximately

6%. Note that jointly training over source code and IR (-O0) has

already outperformed the SOTA model, CodeBERT (82.7%). More

importantly, it is seen that compiler optimizations can notably im-

prove CodeCMR’s performance. We observe that as compared with

-O0, using optimization levels -O2, -O3, and -Os produces MAP

scores greater than 84%.

We regard the above findings as encouraging and intuitive: they

demonstrate the possibility and benefit of learning jointly from

source code and IR code (which are more regulated) rather than

from source code alone. In evaluation (Sec. 6.3), we discuss optimiza-

tion flags further with case studies to reveal that they can effectively

regulate code generation patterns, remove superfluous code frag-

ments, and generate more consistent IR code in the presence of

syntactic or structural changes in the source code. We therefore

summarize the key findings of this early investigation as follows:

Launching a joint training using both program source code

and corresponding IR can notably improve the embedding

quality.

Limitation of Standard Optimization Levels. Despite the en-

couraging results, we note that these default optimization levels

are selected by compiler engineers with different focus, e.g., pro-

ducing smallest possible executable or fast execution. However,

we explore a different angle, where optimizations are “misused”

to generate LLVM IR code to augment program neuron embedding.

In that regard, it is possible to suspect the inadequacy of utiliz-

ing simply the default optimization levels. For instance, certain

CPU flags in -Os and -O3 are aggressive in shrinking IR code (e.g.,

-aggressive-instcombine), which, might not be proper since em-

beddingmodels generally prefermore “expressive” inputs. In evalua-

tion, we find that aggressive flags such as -aggressive-instcombine

are not picked by IRGen.We also find that optimization flags should

be adaptive to source code of different complexity, whereas default

optimization levels are fixed. Sec. 6.3 compares optimization flags

selected by IRGen when analyzing different datasets.

We introduce IRGen, an automated framework to determine

(near-)optimal sequences of optimization flags for each particular

dataset. To compare with standard optimization levels, the final

row of Table 1 presents the improved performance of CodeCMR
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when using IRGen-selected optimization flags. These results show

that IR code optimized using IRGen-formed optimization sequence

significantly improved the accuracy.

Figure 2: The workflow of IRGen.

4 DESIGN OF IRGEN

Fig. 2 depicts IRGen’s workflow. Given a dataset of C source code,

we first form a validation dataset 𝑃 where fitness scores are com-

puted from (see Sec. 4.3). Our observation shows that the size of 𝑃
does not need to be large (otherwise the GA procedure becomes

slow). For the current implementation, we randomly select 5% pro-

grams from the training dataset (POJ-104 or GCJ; see details in

Sec. 6) of CodeCMR.

IRGen initializes the first generation of optimization sequences

(Sec. 4.1), and then launches the GA-based search to iteratively

modify and select sequences giving high fitness scores (Sec. 4.2).

The GA process is repeated 𝑁 times until termination (𝑁 is 800

currently). After termination, we select the 𝐾 sequences with the

top-𝐾 highest fitness scores across the entire GA search. Using

these optimization sequences, each piece of C/C++ code in the

training data can be compiled into 𝐾 syntactically distinct pieces of

LLVM IR code. The resulting augmented code dataset can be used

to empower neural embedding models, by incorporating triplet loss

as an extra learning objective (Sec. 4.4).

Application Scope. This research mainly focuses on the LLVM

compiler framework given its popularity. LLVM provides a total of

196 optimization flags that are applicable on x86 platforms. IRGen

traverses the entire search space to identify sequences expected to

improve embedding quality. IRGen’s iterative method is orthogonal

to the LLVM framework and can therefore be extended to support

other compilers, such as gcc (to manipulate its GIMPLE IR), without

incurring additional technical difficulties.

The current implementation of IRGen primarily enhances C/C++

code embedding. C/C++ programs can be compiled into LLVM IR

and optimized accordingly. Moreover, most security related em-

bedding downstream applications (e.g., CVE search [27]) concern

C/C++ programs. Nevertheless, we clarify that code embedding

has its wide application on other languages such as Java/Python.

It is worth noting that IRGen relies on a rich set of compiler opti-

mizations to generate diverse IR code. Java/Python compilers/in-

terpreters provide fewer optimization passes, and they leave many

optimizations at runtime. As a result, the search space for IRGen to

explore would be much smaller. We also have a concern on the ex-

pressiveness of Java/Python bytecode in comparison with LLVM IR.

Their bytecode seems very succinct, potentially undermining the

SOTA embedding models. Overall, we leave it as one future work

to explore extending IRGen to enhance Java/Python embedding.

IRGen’s present implementation does not consider the order of

optimizations in a sequence. We also assume each flag can only

be used once. This enables a realistic and efficient design when

GA is used; similar design decisions are also made in relevant

works [55, 74]. Taking orders or repeated flags into account would

notably enlarge the search space and enhance the complexity of

IRGen. We reserve the possibility of using metaheuristic algorithms

with potentially greater capacity, such as deep reinforcement learn-

ing [65], for future work. See Sec. 7 for further discussion.

Design Focus. IRGen’s GA-based pipeline was inspired by lit-

eratures in search-based software engineering, particularly us-

ing GA for code testing, debugging, maintenance, and harden-

ing [5, 33, 63, 69, 74, 92]. Sec. 8 further reviews existing studies. Our

evaluation will show that the GA method, when combined with

our well-designed fitness function, is sufficiently good at select-

ing well-performing optimization sequences. Further enhancement

may incorporate other learning-based techniques; see Sec. 7.

4.1 Genetic Representation

Following common GA practice, we represent each optimization

sequence as a one-dimensional vector 𝑣 = (𝑓1, 𝑓2, . . . , 𝑓𝐿), where 𝐿
is the total number of optimization flags offered by LLVM for x86

platforms. Each 𝑓𝑖 is a binary number (0/1), denoting whether the
corresponding flag, 𝑐𝑖 , is enabled or not on sequence 𝑖 . As standard
setup, we initialize 𝑀 instances of vector 𝑣 , by randomly setting
elements in a vector 𝑣 as 1. These randomly initialized sets, referred
to as a “population” in GA terminology, provide a starting point to

launch generations of evolution. Here,𝑀 is set as 20.

4.2 Modification and Selection

At each generation 𝑡 , we employ two standard genetic operators,
Crossover and Mutation, to manipulate all 20 vectors in the pop-

ulation. Given two “parent” vectors, 𝑣1 and 𝑣2, two offsprings are
generated using 𝑘-point crossover: 𝑘 cross-points are randomly

selected on 𝑣1 and 𝑣2, and the content marked by each pair of

cross-points is swapped between them. Here, 𝑘 is set as 2, and the
chance of each potential crossover is set as 0.4. We also use flip

bit mutation, another common method, to diversify vectors in the

population. We randomly mutate 1% of bits in vector 𝑣 . After these
mutations, the population size remains unchanged (20 vectors), but

some vectors are modified. Each vector is assessed using the fitness

function defined in Sec. 4.3. All mutated and unmutated vectors are

then passed into a standard roulette wheel selection (RWS) mod-

ule, where the chance for selecting a vector is proportional to its

fitness score. This way, a vector with a higher fitness score is more

likely to be selected into the next generation. The RWS procedure

is repeated 20 times to prepare 20 vectors for generation 𝑡 + 1.

4.3 Fitness Function

Given a vector, 𝑣 , denoting a sequence of optimization flags, fit-

ness function F yields a fitness score as an estimation of 𝑣 ’s merit.
Specifically, for each 𝑣 , we compile every program 𝑝 in the vali-

dation dataset 𝑃 using optimizations specified in 𝑣 to produce IR
programs 𝑙 ∈ 𝐿. For a C program 𝑝 and its compiled IR 𝑙 , we first
compute the following fitness score:
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠_𝑆𝑐𝑜𝑟𝑒𝑝,𝑙 = 𝑠𝑖𝑚𝐺 ×
𝑢𝑛𝑘_𝑟𝑎𝑡𝑒0
𝑢𝑛𝑘_𝑟𝑎𝑡𝑒𝑙

where 𝑠𝑖𝑚𝐺 denotes the graph-level similarity between the 𝑙 and 𝑝 .
The value of 𝑢𝑛𝑘_𝑟𝑎𝑡𝑒0 denotes the number of #OOV cases found

in IR code 𝑙0 when compiling 𝑝 with -O0 (i.e., the baseline), and

𝑢𝑛𝑘_𝑟𝑎𝑡𝑒𝑙 stands for #OOV cases found in 𝑙 . Then, F is acquired

by averaging the above fitness score for all programs 𝑝 ∈ 𝑃 .
Graph Similarity. The graph similarity metric quantifies the simi-

larity between the original source code and the compiled IR code at

the CFG level. This provides a high-level assessment of the created

IR code’s quality. More importantly, this condition prevents exces-

sive reduction of the code by the compiler optimizations, ensuring

that the IR code reasonably preserves the original source code’s

structure-level features.

We tentatively assessed three graph similarity computationmeth-

ods: 1) kernel methods, 2) graph embedding [35, 97], and 3) tree

edit distance. Graph embedding methods often require to fine-tune

a large number of hyper-parameters which is generally challeng-

ing. We also find that tree edit distance algorithms had limited

capacity to process the very complicated CFGs created for our test

cases. IRGen’s present implementation therefore uses a classic and

widely-used kernel method, shortest-path kernels [18], to quantify

the structural distances between source code 𝑝 and its optimized
IR code 𝑙 . Overall, kernel methods, including shortest-path kernels,
denote a set of methods originated from statistical learning theory

to support pattern analysis [21]. Kernel methods are shown to be

effective in various tasks such as classification and regression. For

our scenario, we feed the employed kernel function with a pair of

CFG derived from source code 𝑝 and the corresponding IR 𝑙 , and
the kernel function returns a score 𝑠𝑖𝑚𝐺 .

OOV Ratio. In embedding learning, OOVs represent tokens that

are rarely observed and are not part of the typical token vocabulary.

We clarify that we follow ncc [16] to define vocabulary. Particularly,

our vocabulary denotes a bag of IR statements, and therefore, IR

code is represented by a list of statement embeddings. Accordingly,

“OOV” in our context denotes a new statement never occurring

in the baseline vocabulary. Such new statements correspond to a

special embedding noted as “[unknown]” in our implementation,

degrading the learning quality.

A high #OOV is discouraged in the fitness function. That is, we

leverage the OOV ratio to punish an optimization sequence if it

results in an IR code with too many OOV cases. To this end, a

“baseline” is first computed, recording the #OOV encountered in IR

code generated by compiling 𝑝 with -O0. Then, given optimization

sequence 𝑣 , we count the #OOV cases identified in its optimized IR

code 𝑙 , and compute the relative OOV ratio.

We clarify that it is possible to avoid token-level OOV issue by

leveraging sub-tokenization techniques like BPE [46]. Given that

said, in the current setting, an IR statement is represented by a single

embedding vector, whereas BPE represents a statement by multiple

vectors of sub-tokens. The extra overhead due to multiple vectors

is seen as acceptable for source code but unaffordable for IR code,

which is orders of magnitude longer. In fact, our preliminary study

explored using BPE: we report that BPE would result in 16× and

30× longer vectors on our test datasets, POJ-104 [66] and GCJ [72].

4.4 Learning Multiple IRs using Triplet Loss

Instead of keeping single sequence with the highest fitness score,

IRGen retains the top-𝐾 sequences from each generation, as ranked

by their fitness scores. We find that it is beneficial to perform aug-

mentation with multiple LLVM IR codes generated by the top-𝐾
optimization sequences (see results in Sec. 5). Given the GA proce-

dure, these top-𝐾 sequences will evidently share some overlapping

optimization flags. However, we find that when a source program

is compiled into 𝐾 LLVM IR programs using these top-𝐾 sequences,

these 𝐾 IR programs are still distinct (see cases at [2]), although

they share regulated code structures that are correlated with the

reference source code. Hence, we anticipate that the augmented

dataset will be diverse, which has been generally shown to be useful

in enhancing embedding learning quality [50, 56, 96]. 𝐾 denotes a

hyper-parameter of IRGen. We benchmark the accuracy changes

in terms of different 𝐾 in Sec. 5.

Figure 3: Learning from IR code with Triplet Loss.

Fig. 3 depicts an efficient and general extension over program

embedding models to subsume multiple IR code. As expected, we

first extend a code embedding model𝑀 to process LLVM IR. Then,

we employ a popular learning objective, namely triplet loss [94],

as the loss function of𝑀 . The triplet, which consists of a positive

sample, a negative sample, and an anchor, is used as the input for

triplet loss. An anchor is also a positive sample, which is initially

closer to some negative samples than it is to some positive samples.

The anchor-positive pairs are pulled closer during training, whereas

the anchor-negative pairs are pushed apart. In our setting, a positive

sample represents a program 𝑝 , anchor represents IR code produced
from 𝑝 , and negative samples represent other unrelated source code.

Note that𝑀 is not necessarily CodeCMR. Other non-trivial source

code embedding models can serve𝑀 in this pipeline; see our eval-

uation on generalization in Sec. 6.4. Further, while we adopt Fig. 3

to enhance 𝑀 , we clarify that there may exist other augmenta-

tion pipelines. We provide proposals of other pipelines at [4] for

information of interested audiences.

5 IMPLEMENTATION

IRGen is written primarily in Python with about 9K lines of code.

This primarily includes our GA pipeline (Sec. 4) and extension of

CodeCMR (see below). IRGen is based on LLVM version 11.1.0 [51].

We also tentatively tested LLVM version 7.0, which works smoothly.

IRGen is built in a fully automated and “out-of-the-box” manner.

Users only need to configure IRGen with the path of their LLVM

toolchain. We release IRGen and data (e.g., augmented models)
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at [1]. Our results can be reproduced using our released artifacts.

We pledge to keep IRGen up to date to support future study.

Figure 4: The main structure of CodeCMR.

Enhancing CodeCMR. As stated in Sec. 3, IRGen is currently im-

plemented with CodeCMR [100], which is a SOTA code embedding

model that has been thoroughly tested on real-world C/C++ pro-

grams. We find that its code is straightforward to use and of high

quality. We emphasize that IRGen is orthogonal to the particular

code embedding models used. We assess the generalization of IR-

Gen using another embedding tool, ncc, which directly computes

embeddings from LLVM IR; see Sec. 6.4. We extended the official

version of CodeCMR to jointly compute embeddings using C source

code and LLVM IR code. We also implement a C/C++ parser based

on treesitter [86] and a LLVM IR parser (extended from ncc), as

we need to compare distance of C/C++ and IR code using kernel

methods. Fig. 4 depicts the main network structure of our extended

CodeCMR. CodeCMR is a variant of DPCNN, which has been shown

to efficiently represent long-range associations in text. As shown

in Fig. 4, the key building block, a word-level convolutional neural

network (CNN), can be duplicated until the model is sufficiently

deep to capture global input text representations. Given that (IR)

programs are typically lengthy and contain extensive global infor-

mation, CodeCMR exhibits promising accuracy.

Table 2: Augmentation using 𝐾 collections of optimized IR.

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7
MAP 86.34 88.03 88.96 89.71 90.16 91.12 90.00

Tuning𝐾 . Recalling that IRGen generates𝐾 collections of IR codes

by returning the top-𝐾 sequences, we now compare the effect of 𝐾
on learning quality. We ran our experiments using CodeCMR trained

on POJ-104 and measured the MAP accuracy for different 𝐾 in

Table 2. Overall, although increasing 𝐾 can continuously extend

the training data, the learning accuracy reached its peak value when

𝐾=6. We interpret these results to confirm another important (and

intuitive) observation:

Aligned with data augmentation on natural language or

image models, involving multiple diverse IR code collec-

tions in training datasets augments the learning quality of

code embedding.

We provide samples on [2] to illustrate how source code can be

compiled into 𝐾 pieces of diverse IR code. In our evaluation (Sec. 6),

we chose 𝐾=6 as the default option. However, we clarify that the
best value of 𝐾 , as a hyper-parameter, can be influenced by both
the specific dataset and the neural embedding model. We therefore

recommend users to tune 𝐾 for their specific learning task.

6 EVALUATION

Our evaluation aims to answer the following research questions:

RQ1: How does CodeCMR, after enhanced by IRGen, perform in

comparison to other relevant works on code clone detection? RQ2:

How accurate is the genetic algorithm (GA) adopted by IRGen?

RQ3: What are the most important optimization flags and their

characteristics? Does the optimal sequence of flags change on dif-

ferent datasets? RQ4: What is the generalization of IRGen with

respect to other models and different learning algorithms? RQ5:

Can IRGen still achieve promising augmentation when only limited

source code samples are available? Before reporting the evaluation

results, we first discuss the evaluation setup as follows.

Dataset.We used the POJ-104 [66] and GCJ [72] datasets for our

evaluations. Table 3 reports the summary statistics of these two

datasets. Asmentioned in Sec. 3, the POJ-104 dataset contains 44,912

C/C++ programs that implement entry-level programming assign-

ments for 104 different tasks (e.g., merge sort and two sum). The

Google Code Jam (GCJ) is an international programming compe-

tition that has been run by Google since 2008. The GCJ dataset

contains the source code from solutions to GCJ programming chal-

lenges. The GCJ dataset is commonly used and contains 260,901

C/C++ programs. Compared to POJ, the GCJ files are longer and

more numerous. We find that GCJ files contain complex usage of

C macros. As described later in the evaluation, we found that the

more lengthy GCJ code and its relatively complex code structures

had notable impacts on the optimization sequences selected by the

GA procedure. For both datasets, we used the default setting to split

them for training and testing. We did not use their validation splits.

For each dataset, we used IRGen to select the top-𝐾 optimization

sequences retained by the GA process. We then compiled each C

source code in the training datasets into 𝐾 pieces of LLVM IR code

to extend the training datasets.

Our method requires that the training codes be compilable. We

indeed explored some other datasets such as Devign [106]. However,

we found that many of its cases cannot be compiled. Fixing these

issues would have required considerable manual effort. Another

practical concern is cost; as soon reported inCost, training CodeCMR

on GCJ already takes over 90 hours on 16 Tesla V100 GPU cards.

Considering larger datasets is out of scope for this research project.

Table 3: Statistics of the dataset used in evaluation.

Split GCJ POJ-104

Classes in training data 237 64
Programs in training data 238,106 28,103
Classes in test data 31 24
Programs in test data 22,795 10,876
Programs with macro 80,432 10
Average lines of C code 71.19 35.97
Average lines of LLVM IR code 1659.50 238.51
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Table 4: Accuracy of all (augmented) models. For each metrics, we mark best models when training with C source code. We

also mark the best models when training with C code and LLVM IR code optimized following different schemes. IRGen

denotes training CodeCMR using source code and six collections of LLVM IR optimized by sequences formed by IRGen.

Method
GCJ POJ-104

MAP@R(%) AP(%) MAP@R(%) AP(%)

code2vec 7.76 (-0.79/+0.88) 17.95 (-1.24/+1.76) 1.90 (-0.43/+0.38) 5.30 (-0.80/+0.60)

code2seq 11.67 (-1.98/+1.73) 23.09 (-3.24/+2.49) 3.12 (-0.45/+0.67) 6.43 (-0.37/+0.48)

ncc 17.26 (-1.11/+0.57) 31.56 (-1.11/+1.46) 39.95 (-2.29/+1.64) 50.42 (-2.98/+1.61)

ncc-w/o-inst2vec 34.88 (-5.72/+7.63) 56.12 (-7.63/+9.96) 54.19 (-3.18/+3.52) 62.75 (-5.49/+4.42)

Aroma-Dot 29.08 42.47 52.08 45.99

Aroma-Cos 29.67 36.21 55.12 55.40

CodeCMR 64.86(-1.49/+0.72) 98.52(-0.16/+0.12) 76.39(-0.55/+1.30) 77.18(-2.95/+1.92)

MISIM-GNN 74.90(-1.15/+0.64) 92.15(-0.97/+0.7) 82.45 (-0.61/+0.40) 82.00 (-2.77/+1.65)

CodeBERT 68.95(-0.91/+0.37) 81.34(-1.29/+0.36) 82.67(-0.42/+0.33) 85.73(-1.14/+2.13)

CodeCMR-O0 81.08(-1.03/+0.58) 96.31(-0.34/+1.11) 82.90(-1.24/+0.97) 84.95(-2.53/+1.03)

CodeCMR-O1 83.87(-0.77/+0.24) 97.10(-0.27/+0.54) 83.37(-0.97/+0.31) 86.61(-1.35/+0.78)

CodeCMR-O2 82.60(-0.81/+0.19) 96.28(-0.57/+0.27) 84.29(-1.24/+0.53) 85.96(-1.18/+0.91)

CodeCMR-O3 82.67(-1.13/+0.69) 96.77(-0.44/+0.64) 84.21(-0.43/+0.98) 85.06(-0.83/+0.39)

CodeCMR-Os 85.17(-0.24/+0.38) 98.02(-0.31/+0.13) 83.81(-0.93/+0.24) 85.07(-0.72/+1.21)

CodeCMR-demix 84.93(-1.44/+0.73) 98.02(-0.49/+0.31) 85.14(-0.71/+0.76) 88.58(-0.93/+0.44)

IRGen 86.48(-1.13/+1.57) 99.94(-0.07/+0.02) 89.18(-0.33/+0.61) 93.24(-0.21/+0.09)

Baseline Models. To compare with CodeCMR augmented by IRGen,

we configure seven embedding models, including CodeBERT [31],

code2vec [11], code2seq [9], ncc [16], Aroma [58], CodeCMR and

MISIM [98]. CodeCMR was introduced in Sec. 3. CodeBERT, ncc, and

MISIM were introduced in Sec. 2.2.

ncc is a unique and extensible code embedding framework that

learns directly from LLVM IR code. As expected, ncc can be aug-

mented with LLVM IR optimized by IRGen (see Sec. 6.4). When

using ncc, we assessed two variants, ncc and ncc-w/o-inst2vec.

The latter model omits the standard ins2vec model [16] for IR

statement-level embedding and instead uses a joint learning ap-

proach to simultaneously compute and fine-tune the statement and

graph-level embeddings. For MISIM, we leveraged its provided vari-

ant, referred to as MISIM-GNN, that leverages GNNs in the learning

pipeline and has been shown to outperform other MISIM variants.

Aroma was released by Facebook to facilitate high-speed query

matching from a database of millions of code samples. Aroma does

not perform neural embedding but instead contains a set of con-

ventional code matching techniques (pruning, clustering, etc.). We

selected Aroma for comparison because it is a SOTA production tool

that also features code clustering and similarity analysis. Hence,

Aroma and neural embedding tools can be compared on an equiv-

alent basis, demonstrating the strength of SOTA neural embed-

ding tools, particularly after augmentation using IRGen. The of-

ficial codebase of Aroma provides two variants, Aroma-Dot and

Aroma-Cos. We benchmarked both variants.

Cost.Our learning and testing for GA were conducted on a desktop

machine with two Intel Core(TM) i7-8700 CPU and 16GB RAM.

The machine was running Ubuntu 18.04. IRGen takes averaged

143.52 and 963.41 CPU hours to finish all 800 iterations of GA

procedure for POJ-104 and GCJ, respectively. Despite the high CPU

hours, we clarify that the wall-clock time can be largely reduced

via parallelism. We explored to re-run the GA procedure on a 64-

core CPU server. We report that it takes about 25 wall-clock hours

for POJ-104, and about 81 wall-clock hours for GCJ. Setting this

parallelism changes about 60 LOC in IRGen; see our codebase at [1].

When needed, it is also possible to optimize GA with subsampling

for extremely large datasets.

Training embedding models are usually very costly. We employ

a GPU server for training for all involved models. The server has

two Intel(R) Xeon(R) Platinum 8255C CPUs operating at 2.50GHz,

384 GB of memory and 16 NVIDIA Tesla V100 GPU, each with

32GB RAM. The learning rate is 0.001 and the repeat number of

residual blocks is 11; other settings of our extended CodeCMR are

the same with the standard CodeCMR setting. In total, over 120

epochs took approximately 15.9 and 91.3 hours for POJ-104 and

GCJ, respectively.

6.1 Accuracy of IRGen

We first answer RQ1 using Table 4. For neural embedding models,

we launch each experiments for three times and report the average,

as well as the minimum and maximum scores in parentheses. Ta-

ble 4 reports the evaluation results of baseline models in lines 3–11.

In accordance with our research motivation (Sec. 3), we also report

results using CodeCMR augmented with IR code optimized by stan-

dard optimization levels (-O0, -O1, -O2, -O3, -Os). CodeCMR-demix

represents training CodeCMR by using source code and five sets of

IR compiled by all five default optimization levels. The last row in

Sec. 3 reports the performance metrics for CodeCMR augmented by

six collections of LLVM IRs optimized using sequences generated

by IRGen. For both the POJ-104 and GCJ datasets, in addition to

MAP, we used AP [13] as the metric. Both metrics are commonly

used in relevant research to assess performance of embedding mod-

els. AP stands for Average Precision, a method combines recall and

precision for ranked retrieval results. For both metrics, a higher

score indicates better performance.
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Our results show that modern embedding models, including

CodeBERT, CodeCMR, and MISIM-GNN, can largely outperform con-

ventional code matching tools such as Aroma-Dot and Aroma-Cos.

When learning over C source code, we found that CodeBERTwas the

best performing model for the POJ-104 dataset, whereas MISIM-GNN

delivered the best performance for the GCJ dataset. In contrast,

CodeCMR performed less well than either of the SOTAmodels across

all of the evaluated metrics. code2vec and code2seq shows rela-

tively lower accuracy compared with others. Since we run each

evaluation three times, we find that their accuracy scores are un-

stable. Such observation is also consistently reported in previous

works [98]. Nevertheless, even the “peak” accuracy scores of them

are still much lower than that of the SOTA models.

When learning from IR optimized using standard optimization

levels, CodeCMR outperformed SOTA model MAP scores by more

than 10% on the GCJ dataset. Evaluation of this form of CodeCMR

training on the POJ-104 dataset showed consistently promising

enhancement relative to the SOTA models in most cases. Also, com-

paring with augmenting CodeCMR with one collection of optimized

IR code, the CodeCMR-demix setting shows (slightly) better perfor-

mance, particularly for the POJ-104 setting. This also reveals the

strength of training with multiple diverse sets of IR code.

We found that CodeCMR, when augmented by findings of IRGen

(the last row of Table 4), constantly and notably outperformed all

the other settings. We interpret the evaluation results as highly

encouraging, showing that IRGen can generate high-quality LLVM

IR code that enhances CodeCMR to significantly outperform the

SOTA models (CodeBERT and MISIM-GNN) on all metrics. Again, we

note that IRGen is not limited to enhance CodeCMR: we present

evaluation of enhancing ncc in Sec. 6.4.

Figure 5: Smoothed fitness score increases over 800 iterations.

6.2 Fitness Function

RQ2 assesses the efficiency of our fitness function. Fig. 5 reports

the fitness score increases from all 800 IRGen iterations across each

GA campaign. The test cases, despite their diverse functionality,

manifested encouraging and consistent trends during optimization

searching. The fitness scores kept increasing and were seen to

reach saturation performance after around 410 to 600 iterations.

We interpret that under the guidance of our fitness function, IRGen

can find well-performing sequences for both datasets.

Figure 6: Ordered contributions of each optimization flag.

6.3 Potency of Optimization Flags

This section answers RQ3 by measuring the potency of selected

optimization flags (selected flags are fully listed at [1]). We report

that for the POJ-104 dataset, the top-1 sequence 𝑆 having the highest
fitness score contains 49 flags. To measure their contribution, we

first train CodeCMR using C source code and LLVM IR optimized

using sequence 𝑆 and record the baseline accuracy as 𝑎𝑐𝑐 . Then, we
iteratively discard one optimization flag 𝑓 from 𝑆 and measure the
augmentation effectiveness of using the remaining sequence with

48 flags. The accuracy drop reveals the contribution of flag 𝑓 .
Fig. 6 orders the contribution of each flag in 𝑆 . Overall, we in-

terpret that no “dominating” optimization flags are found in this

evaluation. In other words, we interpret that all these 49 flags man-

ifest reasonable contribution to the model augmentation, and the

top-10 flags contributes in total 34.38%. We thus make our first

important observation w.r.t. RQ3:

Instead of identifying one or few dominating flags that

significantly contribute to enhancing code embedding, it

is rather the formed sequence of optimization flags that is

important.

This evaluation shows that a sequence of flags works together to

produce high-quality IR, instead of one or a few “franchise players”

that can largely outperform other flags. In other words, the GA

process conducted by IRGen is critical to this research, because it

offers a general way to construct such a sequence with modest cost.

We now consider the characteristics of the ten highest potency

flags. We put these flags into three categories as follows:

Simplify an IR Statement. Optimization flags, including -dce,

-early-cse, -reassociate, -bdce and -loop-deletion, simplify

IR statements via various data flow or control flow analysis meth-

ods. For instance, -early-cse regulates IR statements by elimi-

nating common subexpression eliminations, and -reassociate

reassociates commutative expressions to support better constant

propagation. In all, these optimization can make two syntactically

distinct pieces of source code more similar in IR.
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Make IR Statement Sequences Closer to Source Code. Flags, in-

cluding -mem2reg, -instcombine, and -dse, can simplify the com-

piled IR code, making itmore similar to the source code. For instance,

-mem2reg promotes memory references to be register references.

This prunes verbose memory usage in IR code and generates IR

code similar with source code in terms of memory reference. Other

flags, such as -instcombine and -dse, combine and simplify in-

structions to form fewer and more succinct instruction sequences

that are generally closer to source code.

Simplify CFG. Optimization flags, including -break-crit-edges,

-simplifycfg, and -loop-rotate, perform more holistic transfor-

mations to simplify the IR code CFGs. For instance, -simplifycfg

performs dead code elimination and basic block merging by elimi-

nating useless basic blocks and their associated LLVM PHI nodes.

By regulating CFGs, these optimizations deliver similar IRs from

two semantically similar but syntactically different source codes.

Our analysis identified numerous optimization flags that signifi-

cantly improved the training IRs for embedding learning. This is

intuitive, given that they launch transformation from different gran-

ularities. More importantly, we make the following observation to

characterize important optimization flags:

Optimization passes that simplify and regulate IR code, ei-

ther at the IR statement level or the CFG level, are generally

desirable.

Many of these flags are often employed as cleanup passes to run

after compiler inter- or intra-procedural optimizations.

Optimization Passes on GCJ

We further analyze the top-1 optimization sequences found by

IRGen for the GCJ dataset. This top-1 sequence contains 50 flags.

Given that the top-1 sequence found over POJ-104 contains 49

flags, we further measure the agreement of these two sequences by

counting the number of flags appeared in both sequences. These

two sequences agree on 28 flags. The top-3 flags in the POJ-104

sequence all exist in the intersection set, and five of the top-10

flags in the POJ-104 sequence exist in the intersection set. With

respect to the (dis)agreement, we conduct a manual investigation

and summarize our findings as follows:

Agreement. We found that these 29 overlapping flags primar-

ily serve the purpose of simplifying and regulating IR code in

different ways. For instance, -reassociate and -deadargelim

simplify IR statements and delete dead arguments. The rest over-

lapping flags are used as utilities for other passes (e.g., -lcssa

serves loop-oriented optimizations) or for analysis purposes (e.g.,

-block-freq). Overall, we interpret that code cleanup and regula-

tion are generally applicable to enhancement of learning quality.

Disagreement. Given that POJ-104 test cases are relatively suc-

cinct, we find that IRGen tended not to select flags that focus on

shrinking the code size. In contrast, GCJ contains much lengthy

C/C++ code, whose derived LLVM IR code is even more lengthy.

Hence, IRGen adaptively prioritizes more flags to reduce the size.

Overall, we find that whether IRGen inclines to “shrink” code size

is dataset-dependent. IR compiled from POJ is generally shorter

than that of GCJ; therefore, it has fewer OOV issues and the need

for shrinking is less frequent. GCJ has lengthy IR and more OOV IR

statements; it is demanding to shrink IR to avoid OOV. In addition,

GCJ features more floating number related programming tasks, and

accordingly, floating number related flags, such as -float2int,

are involved to turn floating numbers into integers and effectively

reduce the #OOV cases. In contrast, POJ-104 dataset does not pri-

marily involve floating number-related computations.

Overall, we interpret these results as promising: we found that

over half of the optimization flags selected by IRGen (29; 29/49 =
59.2% of all flags selected over POJ-104) were selected across two

datasets of different complexity without using any pre-knowledge

or in-depth program analysis. These overlapping flags further high-

light the importance of cleaning up and regulating IR code to make

neural embedding models more robust. Moreover, the 42.9% dis-

agreement, to some extent, shows that IRGen enables the selection

of more diverse flags adaptive to different datasets.

Table 5: Augment ncc over the POJ-104 dataset.

Model MAP@R(%)

ncc 39.95
ncc-random 40.34
ncc-IRGen 56.07
ncc-w/o-inst2vec 54.19
ncc-w/o-inst2vec-random 55.10
ncc-w/o-inst2vec-IRGen 60.46

6.4 Generalization

As aforementioned, augmentation (including the fitness function;

see Sec. 4.3) delivered by IRGen is independent from particular em-

bedding model design. To answerRQ4, we demonstrate the general-

ization of IRGen by augmenting another popular neural embedding

model, ncc. As previously described, ncc performs embedding over

LLVM IR code. Therefore, we did not need to change the implemen-

tation of ncc. The ncc augmentation evaluation results are reported

in Table 5. To compare with optimization sequences formed by IR-

Gen, we also prepare a “baseline”, denoting a sequence containing

randomly selected 49 optimization flags. These two baseline results

are reported in third and sixth rows.

As expected, augmentation notably improved the quality of ncc

and ncc-w/o-inst2vec. Particularly, the MAP score of the lat-

ter model is improved to 60.46%, which is even higher than the

scores achieved by two variants of Aroma. In contrast, we find

that two random schemes show negligible enhancement. Overall,

this evaluation indicates that IRGen delivers general augmentation

for neural code embedding models, without consideration of the

specific model designs.

6.5 Augmentation with Small Training Data

RQ5 considers a scenario where program embedding is inhibited

by a limited amount of training data. We argue that this is a com-

mon situation, such as in vulnerability analysis where only limited

vulnerable code samples are available. In these situations, we an-

ticipate the feasibility and usefulness of extending training dataset

and augmenting embedding models using optimized IR code.

Fig. 7 presents the evaluation results of augmenting a small train-

ing dataset. Specifically, we randomly selected 1% of the C source
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Figure 7: Performance with different size of training data.

codes from the POJ-104 training data to train CodeCMR and mea-

sured the resulting embedding accuracy, which was quite low (the

first bar in Fig. 7; MAP = 24.08%). However, after using different

standard optimization levels and optimization sequences selected

by IRGen, the MAP accuracy increased to over 40%, almost doubling

the original MAP score. In addition to an extreme 1% sample test,

we also randomly selected 5%, 20%, and 50% of the POJ-104 train-

ing data and re-trained CodeCMR. As shown in Fig. 7, we further

augmented the model for each subset by using the same standard

optimization flags and flags selected by IRGen. We consistently

achieved promising augmentation results. In particular, optimiza-

tion flags found by IRGen outperformed all other augmentation

schemes in all of these small training data settings. These intuitive

and highly promising evaluation results indicate that IR code can

be leveraged to significantly and reliably augment code embedding,

particularly when only very limited data are available. Comparing

with standard optimization levels, optimization sequences selected

by IRGen can result in even higher enhancement.

7 DISCUSSION

Generalizability of Downstream Applications. This work fo-

cuses on a representative downstream task of code embedding —

code clone detection. To clarify the generalizability behind “code

clone”: program embeddings can be used as the basis of a variety of

downstream tasks like malware clustering, vulnerability detection,

and code plagiarism detection. Holistically, many of these applica-

tions are based on deciding two software’s similarity. Therefore,

we view “code clone” detection as a core basis to assess those ap-

plications. Nevertheless, the augmentation pipeline of IRGen is

generally orthogonal to a particular downstream task. We leave it as

one future work to benchmark the augmentation capability offered

by IRGen toward other important downstream applications, such

as vulnerability detection and program repair. We envision to have

consistently promising observations.

Conflicts Between Optimization Flags. gcc documents a set of

constraints between optimization passes [32] wherein using two

conflicting passes can result in compilation errors. However, to

our knowledge, the LLVM compiler framework does not explicitly

document any “conflicting” flags. We are also not aware of any

compilation errors caused by using two conflicting LLVM passes.

In cases where one flag has conflicts with other flags, such informa-

tion can be explicitly encoded as constraints to validate generated

optimization sequences.

Other Learning Methodologies. Production compiler frame-

works like gcc and LLVM provide considerable optimization flags,

forming a large search space in our research scenario. IRGen consti-

tutes a GA-based approach to search for (near-)optimal optimization

sequences. Our empirical evaluation shows that the proposed learn-

ing process is sufficient to identify high-performing optimization

sequences. We note that there are more advanced (evolutionary)

optimization algorithms available. In particular, the two fitness

objectives could have been optimized separately (i.e., with multi-

objective optimization). Also, from a holistic view, searching for

optimization sequences is a Markov Decision Process (MDP). Com-

plex MDPs (e.g., auto-driving) can be likely addressed with rein-

forcement learning (RL) techniques. Future work may explore using

advanced deep RL models, which have achieved prominent success

in solving real-world challenges in autonomous driving [28, 84]

and video games [65].

8 RELATEDWORK

We reviewed program embedding from various perspective in Sec. 2.

The development of IRGen was inspired by existing works in

search-based software engineering [39, 40] and search-based it-

erative compilation techniques [12, 22, 24, 48, 49]. In general, many

tasks in software engineering require exploration of (optimal) solu-

tions under a range of constraints and trade-offs between resources

and requirements. To this end, metaheuristic algorithms, such as

local search, simulated annealing (SA) [47], genetic algorithms

(GAs) [95], and hill climbing (HC) [76] are frequently used to ad-

dress these challenges. Typical applications include testing and de-

bugging [38, 62, 63], verification [5–7, 23, 34], maintenance [69, 81],

and software hardening [33, 33, 83].

A line of relevant and actively-developed research augments soft-

ware obfuscation by combining obfuscation passes. Liu et al. [55]

search for a sequence of obfuscation passes to maximize obfuscation

effectiveness (and thus make software more secure). Amoeba [92]

empirically demonstrated that combining obfuscation passes, though

enhancing obfuscation potency, often carries high costs. Wang et

al. [87] trained a reinforcement learning model to explore optimal

obfuscation combinations by taking both cost and effectiveness

into account. BinTuner [74] uses a guided stochastic algorithm to

explore how combinations of compiler optimization passes can

obfuscate software.

9 CONCLUSION

Existing neural program embedding methods are generally limited

to processing of program source code. We present simple, yet ef-

fective, strategies to improve embedding quality by augmenting

training datasets with compiler-generated IR code. In addition to use

of default compiler optimization levels, we present IRGen, a search-

based framework to find customized optimization sequences that

produce IRs that can substantially improve the quality of learned em-

beddings. In evaluation, these models outperformed others trained

using only source code or IR generated with default optimization

combinations. Our study provides insights and guidance for users

aiming to generate higher quality code embeddings.
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