Generating Effective Software Obfuscation
Sequences with Reinforcement Learning

Huaijin Wang, Shuai Wang, Member, IEEE, Dongpeng Xu, Xiangyu Zhang, and Xiao Liu

Abstract—Obfuscation is a prevalent security technique which transforms syntactic representation of a program to a complicated form,
but still keeps program semantics unchanged. So far, developers heavily rely on obfuscation to harden their products and reduce the
risk of adversarial reverse engineering. However, despite its spectacular progress, one crucial hurdle is that each of existing
obfuscation method is designed specifically for obfuscating one program feature (e.g., identifier name, control flow), so an effective
obfuscation scheme usually composes a considerable amount of different obfuscation methods. Therefore, one primary challenge lies
in identifying effective combinations of obfuscation methods. In this research, we propose a principled technique for generating an
optimal program obfuscation scheme by adopting a reinforcement learning approach. Given a program and a set of obfuscation
transformations, a reinforcement learning model is progressively trained to select a sequence of obfuscation transformations, such that
applying each transformation in order towards the program yields the optimal obfuscation result, making programs dissimilar while
retaining reasonable instrumentation overhead. Our implementation can directly work on raw binary executables without source code,
and our evaluation demonstrates that the trained models can effectively obfuscate executable files with low cost.

Index Terms—Software obfuscation, reinforcement learning, reverse engineering, software similarity

1 INTRODUCTION

OFTWARE obfuscation [1] is a semantic-preserving trans-

formation aiming to notably change a program’s syn-
tactic appearance. Since the transformed program looks
significantly different from the original program, it prevents
attackers from understanding, reverse engineering, or even
extracting some features related to the original program.
Software obfuscation techniques have been widely used in
software protection [2], information hiding [3], cryptogra-
phy [4], and malware development [5], [6]

A great variety of obfuscation methods have been devel-
oped for transforming software from different aspects, e.g.,
scrambling identifier names [1], [7], opaque predicate [2],
data encoding [3], and control flow flattening [8]. However,
only applying one type of obfuscation cannot produce a
significantly different program, because each of these exist-
ing methods only obfuscates one particular software feature
without changing others. Therefore, effectively obfuscating
a program requires 1) an elaborate scheme of synergiz-
ing various obfuscation methods; 2) iteratively applying
the obfuscation methods in the scheme to the program.
Particularly, the scheme must consider performance cost,
since obfuscation methods often introduce redundant struc-
tures, leading to considerable execution slowdown (e.g.,
by complicating program control structures). Consequently,
how to select and combine various obfuscation methods to
effectively and efficiently obfuscate a program still remains
a challenge to existing research.

e Huaijin Wang and Shuai Wang are with the Department of Computer
Science and Engineering, HKUST, Hong Kong SAR.
E-mail: (hwangdz@cse.ust.hk; shuaiw@cse.ust.hk)

o Dongpeng Xu and Xiangyu Zhang are with University of New Hamp-
shire, NH 03824 USA.
E-mail: (dongpeng.xu@unh.edu; xz1057@uwildcats.unh.edu)

o Xiao Liu is with Facebook Inc., CA 94025 USA.
E-mail: bamboo@fb.com

In this work, we propose a new method to automatically
generate optimal obfuscation schemes based on reinforce-
ment learning (RL). The key idea is to let an RL model
guide the selection, configuration and scheduling of dif-
ferent obfuscation methods, so as to achieve a high-quality
obfuscation result, i.e., the transformed program is remark-
ably different from the original program with only trivial
performance overhead. Given a program P and a set of ob-
fuscation transformations T' = {t1,ts,...,t,}, our method
outputs a sequence of obfuscations t;,t;,...,%x, where
i,7,...,k € [1,n]. Iteratively applying this sequence of
obfuscations to program P will produce a highly-obfuscated
program with low-performance cost.

To this end, we design and implement RLOBF, a prac-
tical tool employing deep reinforcement learning (DRL),
particularly Deep Q-Network (DQN) to synthesize low-cost
obfuscation sequences for use in practice. The DQN model
is rewarded by simultaneously considering: 1) similarity
between the obfuscated program and the input program,
and 2) execution slowdown of the obfuscated program.
A sequence of obfuscations gets a higher reward if the
similarity score decreases significantly while does not incur
too much execution slowdown.

We have implemented RLOBF to directly transform x86
program executables, and we have conducted an evaluation
on a comprehensive set of commonly-used Linux appli-
cations with diverse functionality. Our evaluation demon-
strates promising findings: RLOBF can successfully find
obfuscation sequences of a good quality for all the evalu-
ated executable files to reduce the similarity score to less
than 0.68 — the average score for two different programs
in our dataset. More importantly, the synthesized obfus-
cation sequences impose only 18.8% execution slowdown
to the obfuscated software. Further evaluation shows that
obfuscated programs are highly obscure and stealthy w.r.t.

Intermediate Obfuscated Software

Input

Output

Obfuscated Obfuscated
Softwa s Softwa re Software

Obfuscated FLA Obfuscated OPA Obfuscated
Software Software Software

Software Complexity Increase ©

>
>

Obfuscation Cost Increase ®

Fig. 1. The dilemma of constructing obfuscation sequences. With more obfuscation passes applied, software becomes more complex, but could
lead to higher cost (e.g., execution slowdown), and vice versa. Abbreviations (e.g., BBR, OPA, FLA) denote different obfuscation methods (see

Table 1).

standard metrics, and security impact evaluation shows that
obfuscated programs can primarily eliminate chances for
code reuse attacks [9] and adversarial reverse engineering.
Model interpretation analysis shows that our trained models
can successfully capture subtle but critical features from
software control structures and make decisions properly.
We also show that the obfuscated programs can evade
binary diffing effectively, while incurring very low cost,
compared to randomly obfuscated programs. To our knowl-
edge, RLOBF is the first work to synthesize obfuscation
sequences with Al techniques, addressing a key challenge
in today’s cybersecurity landscape. In summary, we make
the following contributions:

o We advocate a new focus to leverage deep reinforce-
ment learning model to promote software obfuscation
by synthesizing high-quality and low-cost obfuscation
sequences. We design a unified and systematic frame-
work for generating diverse and comprehensive obfus-
cation results.

o We implement RLOBF, a practical tool to directly pro-
cess executable files, being generic to software written in
any programming language and significantly broaden-
ing the application scope.

e Our extensive evaluation has synthesized optimal ob-
fuscation sequences to all the tested Linux applications
with modest cost despite their diverse functionality,
by successfully capturing critical features on program
control structures.

o We will publicly maintain RLOBF to benefit follow-up
research. To facilitate the reproduction and reviewing of
our results, an snapshot of RLOBF’s codebase has been
uploaded to GitHub [10]. Evaluation data, including
the trained models and the obfuscated programs, have
been shared publicly as well [11].

2 BACKGROUND AND MOTIVATION

2.1 Software Obfuscation

Obfuscation is an important and timely topic for protecting
software systems from adversary analysis. Typical obfusca-
tion techniques substantially change program control flow
structures and have been shown to be effective in hiding the
underlying functionalities and complicating the execution
flow of a program. The strategy of using obfuscation to
defeat adversary analysis can be traced back to Collberg
et al. [2], [12]. Since then, many research efforts have been
made to develop obfuscation techniques for various sce-
narios [13], [14], [15]. Obfuscation methods play a crucial

before after

push eax
mov al,
inc esi
mov [edi], al
inc edi

pop eax

[esi]

mov sb

mov eax, @ Xor eax, eax

not eax

add eax, 1
neg eax

(a) Instruction replacement substitutes one instruction
with a sequence of syntactically different but semantics-
preserving instructions.

5

(b) Opaque predicate inserts a tautology path condition that
is hard to analyze, but will be always evaluated to one
direction during runtime.

(c) Control flow flattening transforms control flow graph
(CFG) into a switch statement, which leverages two dis-
patcher nodes (top and bottom on the flattened CFG) to
guide the control flow transfers and decides the target basic
blocks.

Fig. 2. Three software obfuscation methods.

role in protecting software from malicious reverse engineer-
ing. Fig. 2 lists three commonly used software obfuscation
methods. They make a program more complex in terms of
instructions, path conditions, and control flow, while still
preserving the original functionality.

To date, a large set of obfuscation methods has been
developed. As shown in Fig. 1, the common practice is
to iteratively transform software by pipelining and syner-

gizing obfuscation passes, until getting a satisfied result.
Each obfuscation pass reasonably complicates the program
presentation, and can potentially generates new program
components (e.g., more basic blocks) to be used for further
iterations of obfuscation. For example, a popular obfus-
cation framework, LLVM-Obfuscator [16], provides three
obfuscation methods and allows users to specify the number
of iterations and which obfuscation to use for each pass.

2.2 Deep Reinforcement Learning (DRL)

RLOBEF is built on top of a DRL model for synthesizing high-
quality obfuscation traces. Before presenting the details of
RLOBF we first introduce the basic background of RL and
Deep Q Learning. The following formulation of a typical RL
process is related to the presentation given in [17].

RL is a machine learning method for an agent to learn
behavior through a trial/error interaction with a dynamic
environment. Various behaviors cause different reward-
s/penalty from the environment and the learning goal aims
to maximize the cumulative reward. The environment is
normally described as a Markov decision process (MDP),
and the whole learning process can be formalized as a
stochastic process. For every step in the MDP, the agent gets
reward/penalty by interacting with the environment and
the states in the environments also update accordingly.

We present the formal description of a typical RL
process as follows. First, we define an MDP as a triple
M = (X, A, P), where X represents a set of states in the
environment, A is a set of actions an agent can take, and
P represents the transition probability kernel, which assigns a
probabilistic value denoted as P(-|x, a) for each state-action
pair (z,a) € X x A. ForeachU C X x R, P(Ulz, a) is the
probability such that performing action a at state induces
the system to transition from z into 2’ € X and to return
reward value U € R. Therefore, for any state transition triple
(z,a,y) € X x Ax X that corresponds to the state transition
from z to y with action a, the probability is defined as
follows:

P(z,a,y) = P(y x R|z,a)

‘P also provides the immediate reward function, namely,
r: X x A — R, which specifies the expected immediate
reward r € R that is received if action a is selected at state
z as follows:

r(z,a) = E[R(; q))]

Therefore, in the stochastic process (%¢t1,Ti41) ~
P(-|xt, ar), the objective of the agent is to select a sequence
of behaviors that maximizes the expected cumulative re-
wards:

o0
R = Z ’)’tRH_l
t=0
Typically, v € (0,1); therefore, according to the above
formula, rewards received in the near future are of higher
priority than those rewards received at the later stages. Let
m(alx) to denote the probability of action a being taken at
state x, where policy m maps states to actions (i.e., 7 : X —
A). Then, we define a @) function

o0
Q" (z,a) = E{thRHﬂXO =z,Ay=al,x€X,ac A
t=0

where Ay is the first action that is selected randomly and
Xy is the starting environment. Q™ (z, a) denotes the cu-
mulative reward for an agent that is received along the
interaction process according to a policy 7. To approximate
an optimal () function, usually the () function is typically
expressed into the following notation for update:

Q" (¢, a¢) — 04<7‘t + ngXQ(xtHv a) — Q(xt, at))

where « € (0, 1) is the learning rate and + is the @ function
update rate. In the above notation, the value of Q(z¢, at)
will be updated as the maximum expected future reward
that the agent will obtain if it takes action a; at certain state
Tt.

A common method for maintaining and updating the
@ function is by using a table, namely, a Q table [18].
However, as the space and number of action candidates
largely increase, the performance cost for maintaining a Q
table becomes a burden. The state-of-the-art research seeks
more “fuzzy” representations to lower the cost. Particularly,
Mnih et al. [19] propose deep Q-networks (DQN) for ap-
proximating the) function. They translate the definition of
Q function update to the following loss function L. After
the translation, the new learning process of DQN aims at
minimizing the loss function.

2
L= (r + ’ymaaX Q(xt41,a) — Q(z¢, at))

DON has been broadly applied to solving practical prob-
lems and gained substantial success, e.g., playing strategic
board games [20] and video games [21]. In this research, we
demonstrate that DQN can be used to synthesize quality
obfuscation sequences.

3 RESEARCH MOTIVATION

As shown in Fig. 1, the software obfuscator typically
transforms an input program for several iterations, each
pass applies one obfuscation method toward the (already-
obfuscated) code. It is easy to see that a synergistic effect
could be imposed by composing different obfuscation meth-
ods together: an obfuscation method could provide more
transformable code fragments to its follow-up obfuscation
methods [22]. For instance, by first transforming a function
with opaque predict insertion, extra basic blocks will be
inserted into the function. The obfuscated function can
benefit a follow-up control flow flattening obfuscation (cf.
Fig. 2¢), and further be obfuscated into a complex “switch”
statement. The output by stacking two obfuscation methods
would be obviously more complex than using only con-
trol flow flattening or opaque predication insertion. Hence,
the obfuscation sequences become the prominent factor
to decide the effectiveness and efficiency of obfuscation
campaigns. Although a variety of software obfuscation tech-
niques have been proposed and used in real-world software
development, how to effectively adapt and schedule these

obfuscations still remains an unsolved problem. Overall, we
note that to present an effective obfuscation sequence, the
following two aspects both play a critical role.

Length of Obfucation Sequence. Fig. 1 depicts a practical
dilemma in obfuscating software with a sequence of obfus-
cation passes. By increasing the number of applied passes
and obfuscating more program components that could have
been obfuscated before, the software naturally manifests less
similarity compared to the input program. On the flip side, a
usually unforeseen drawback is that “lengthy” obfuscation
sequence overly transforms software, imposing noticeable
cost (i.e., execution slowdown), and therefore becoming less
desired in real-world scenarios. Nevertheless, while using
more succinct sequences of obfuscations intuitively reduce
the cost, obfuscation can become less comprehensive and
therefore the output is still similar to its input program.

Selection of Particular Obfuscation Methods. As discussed
in Sec. 2.1, obfuscation schemes vary in granularity from
a single instruction to a pair of basic blocks, or even the
entire control flow structures. Different obfuscation methods
can therefore impose various impacts on obfuscation effec-
tiveness and cost. For instance, as will be discussed in the
evaluation of this research (Sec. 6), relatively heavyweight
methods like control flow flattening can usually incur higher
cost compared to lightweight methods like instruction re-
placement. Overall, given an obfuscation sequence of N
methods (i.e., t1,%2,...,%,...,tn), to decide a particular
obfuscation method for the kth pass (i.e.,), both the accu-
mulated cost and effectiveness derived from t1,ts,...,tr_1
should be taken into account. A heavyweight method could
be adopted, if the accumulated cost is still low, and versa
vice.

The aforementioned two aspects, if properly handled,
constitute a quality obfuscation sequence. Nevertheless,
most popular obfuscation tools let users construct obfus-
cation sequences, which places a heavy burden on users be-
cause they rarely have insights on the quality of composed
obfuscations. Typically to protect software from adversary
analysis (e.g., similarity analysis, the basis of various soft-
ware attacks [23], [24], [25]), users will need to conduct
obfuscations for 5 to 30 iterations and face a large space to
explore. For instance, given the three obfuscations provided
by LLVM-Obfuscator, number of obfuscation combinations
are 3", revealing a considerably large search space where
N is the length of an obfuscation sequence. Without an in-
depth understanding of obfuscations’ synergy effect toward
specific software, it is challenging, if at all possible, for
users to identify optimal sequences. In sum, the lack of
guidelines to compose obfuscation schemes may impede
reaching the full potential of program obfuscation schemes,
placing concern to the quality of obfuscated code. This ob-
servation primarily motivates our research on automatically
generating obfuscation sequences via DRL.

4 DESIGN oF RLOBF

As presented in Fig. 3, RLOBF can directly take binary
executables as the input, so that it is not restricted by spe-
cific programming languages. Given an executable file, we
perform disassemble to recover assembly programs as well

Select Strategy

Model

[00] Obfuscation Methods
Ny

Encoding

Executable
File

[§ -
Train I
lDecompiIe Action R
Assembly Assembly (Re-)Obfuscated |Compile COSt' Similari'ty
Program Program Assembly Analysis || Analysis

Fig. 3. Workflow of RLOBF. Note that the workflow forms an iterative pro-
cess, where the disassembled assembly program can be re-obfuscated
for multiple steps. For each step, we compute a reward to train the
model.

as program control structures. We then train an agent to
select an obfuscation method (see Sec. 4.1) and transform the
recovered assembly code. RLOBF is constructed as a DQN
with two LSTM layers (the first is bidirectional) followed
by a fully connected layer (each layer has 512 neurons). We
use tokenizer encoding to encode the assembly opcode for
each instruction in the disassembled assembly program and
connect the encoding sequence with the LSTM layers.

When training the model, we measure the quality of
applied obfuscation by considering syntactic similarity and
performance cost. Syntactic similarity compares the syntax-
level similarity between obfuscated executable file and the
input. A low similarity score indicates a better obfuscation
result, because it “appears” to be much different from the
original program. Note that all obfuscations are semantics-
preserving transformation, that is, they only change the
syntactic-level difference but not touch the real program be-
havior. Performance cost measures how much performance
overhead is introduced by the obfuscation. An obfuscation
is deemed as good if it introduces small overhead.

Program syntactic similarity and performance cost will
be used as the learning reward to train the agent (Sec. 4.2).
The overall workflow forms an iterative process and we re-
apply this process to the already obfuscated programs until
either the obfuscated executable successfully reduces the
similarity rate below a predefined threshold 7', or we have
applied over IV obfuscations (i.e., obfuscation sequence be-
comes too lengthy). Parameters 1" and N can be configured
by users.

4.1 Action Space

In the task of reinforcement learning, the learning agent is
trained to select an action to perform among the action space
at each step. For a given binary executable to obfuscate, the
learning goal can be interpreted as to select a sequence of
obfuscation methods. To implement RLOBF, we use seven
widely-used, practical obfuscations indexed by existing re-
search survey [26].

The roster of these methods are given in Table 1. These
obfuscation methods work on various granularities, ranging
from instructions, basic blocks, to functions. We now briefly
introduce each obfuscation method and how it is imple-
mented in RLOBF. Note that due to the limited space, here
we only discuss the design and implementation essential.
Readers can always refer to the released code [10] for
implementation details of each obfuscation pass.

TABLE 1
Obfuscation methods implemented in RLOBF.

Class Methods Abbreviations
Instruction Level instruction rep'lacen}ent IR
garbage code insertion GRA
basic block reordering BBR
Basic Block Level basic block splitting BBS
opaque predict insertion OPA
branch function insertion BFI
. function reordering FR
Function Level control flow flattening CFA
function inline FIL

Instruction Replacement. As aforementioned, instruction
replacement substitutes one or a sequence of instructions
with a set of semantics-identical instructions. For the im-
plementation, we leverage three instruction mappings to
pinpoint and substitute one special instruction with its
semantics-identical instructions. For instance, mov %eax,
0 resets register $eax with zero, which can be replaced
with xor %eax, %eax. For each pass, we scan for all
substitution candidates and perform the replacement. It is
worth noting that although not obvious, some replacement,
e.g., frommov %eax, O toxor %eax, %eax, could actu-
ally change CPU flags into different values and therefore
stealthily alter the control flow and semantics. To tackle
this challenge, we put pushf and popf instructions before
and after the replaced instruction to temporarily store and
retrieve CPU flag values from the stack.

Applying instruction replacing can make the obfuscated
programs reasonably differ from the original code. Nev-
ertheless, as instruction replacement does not change the
program structures, program obfuscated with instruction
replacement can still be matched to its original program
according to control structures. Our evaluation shows con-
sistent findings.

Garbage Code Insertion. This obfuscation scheme inserts
meaningless instruction sequences (i.e., “garbage code”)
into the program. While the inserted instructions change the
program representation, “garbage code” does not change
program functionality, thus can be inserted into arbitrary
places. For the implementation, we insert a random number
(1-5) of garbage instructions within every function. The
three insertion candidates are nop, mov val, wval, and
xchg val, val, where val could be CPU registers or
memory cells.

Garbage code can be inserted into arbitrary positions
of program layout, exhibiting appealing features to obfus-
cate program syntactic-level representations with reason-
able cost. Nonetheless, this obfuscation scheme does not
change program structures as well.

Basic Block Reordering. This obfuscation scheme reorders
the relative positions of two basic blocks. To guarantee the
functionality correctness, we insert extra control transfers,
which induce more edges on the control flow graph. To
implement this scheme, each pass iterates every function
and checks if this function has at least three basic blocks. If
so, we randomly select and reorder one pair of basic blocks
within that function.

Our tentative studies show that the extra control transfer
instructions introduced by reordering a pair of basic blocks

leads to performance penalty. Nevertheless, this method
adds extra edges to the control flow graph, raising extra
challenges to program similarity analysis which relies on
program control structures.

Basic Block Splitting. This obfuscation method splits one
basic block into two. We insert an extra jmp instruction
between two adjacent instructions within a basic block b.
The inserted jmp points to the second instruction, thus
splitting block b with an additional control transfer. Similar
to basic block reordering, our implementation gathers all
functions with more than ten instructions. Then, for each
function candidate, we randomly select an instruction and
insert the jmp instruction after it. This obfuscation method
brings in extra edges and nodes into the control flow graph
and therefore, can reasonably defeat software similarity
analyzers from adversaries.

Opaque Predicate Insertion. As mentioned in Fig. 2,
opaque predicate introduces bogus branch conditions which
expose high challenge for static reasoning, but will be
always evaluated to “true” (or “false”) during the run-
time. For the implementation, we use a set of number-
theoretic constructions (e.g., (x*(x-1) % 2 == 0)) as
opaque predicate candidates. For each obfuscation pass, we
first randomly select an opaque predicate from the number-
theoretic construction set. We then randomly select a basic
block within a function and insert the opaque predicate
ahead of it.

The opaque predicate scheme can generate a consider-
able number of new blocks and edges on the program con-
trol flow. Hence, compared to basic block reordering/split-
ting, each pass can more fruitfully complicate the program
control structures. Nevertheless, relatively higher cost can
be introduced, given the complexity of the opaque predicts.
In contrast to existing tools which let users decide to apply
this scheme or not toward a particular program, we train a
DRL model to make the decision.

Control Flow Flattening. As discussed in Sec. 2.1, this
scheme flattens the control flow graph into a big “switch”
statement. Two “dispatcher” blocks are deployed to redirect
the execution flow, preserving the semantics of the original
program. To implement this obfuscation pass, we randomly
select one function each time and flatten its control flow
graph. Note that we do not obfuscate a function if it uses
indirect jumps. “Dispatcher” blocks hard-code destinations
of each control transfer, and it is generally challenging to
reason the control transfer destinations of x86 indirect jump
instructions.

Our preliminary studies show that this obfuscation
method can introduce considerable amount of extra cost;
this is intuitive because this scheme largely complicates
the control flow structure. For every control transfer in the
original program, it is converted into three control transfers
(entering, exiting, and jumping between two “dispatcher”
nodes) in the flattened control structures.

Branch Function Insertion. This scheme identifies jump
instructions and replaces them with function calls. Each
function call instruction will call an artifact function, named
“branch routine”, to redirect the control transfer back to the
destinations of the original jump instructions (the destina-
tion address is stored in a global variable and accessed by

the branch routine). To implement this obfuscation, each
pass randomly picks 2% jump instruction to obfuscate,
where z is empirically decided as 2.5 for our current im-
plementation.

The opaque predicate scheme reasonably complicates
the control flow graph and call graph, by replacing jump
instructions with function calls to a branch routine function.
More importantly, our deliberately implemented routine
function contain less than ten instructions, introducing small
performance penalty. Indeed, our observation and evalu-
ation shows that this obfuscation is highly likely to be
selected by our RL model, given its high effectiveness and
modest cost.

Function Reordering. Similarly to basic block reordering,
performing function reordering swaps the relative positions
of two functions in the program memory layout. For the
implementation, we randomly select one pair of functions
and swap their positions.

This method reasonably changes the program layout
by swapping functions, but does not primarily introduce
extra edges on program control structures. Our observa-
tion shows consistent findings: this method reduces the
similarity of obfuscated programs without overwhelmingly
lagging the program.

Function Inline. This obfuscation scheme inlines functions
into their call-sites by changing call instructions into push
and jump instructions to preserve the original semantics.
At this step we only identify and inline direct call-sites.
Hence, we conservatively preserve the inlined function at
its original place. To implement this obfuscation method,
one function is randomly selected each time to transform as
long as its size is less than a threshold (the threshold is set
as 500 bytes).

This method largely changes the program layout by
using a relatively small function to extend its callers, which
can adequately complicate the intra-procedural control flow
graph of the caller functions and introduce extra nodes
and edges in the obfuscated binary code. For each inlined
function, we change its return instructions into jump in-
structions, whose destination is the instruction adjacent to
the original callsite of the caller functions. Our observation
shows that IDA-Pro can incorrectly treat the newly-created
jump instructions as “function exit point”, thus causing
considerable errors in function boundary recovery. See our
evaluation in Sec. 6.3.1 and Sec. 6.6.2.

Overall, instruction-level obfuscations perform a relatively
lightweight transformation, while basic block and function-
level obfuscations take higher-level control structures into
account, thus imposing larger changes to the program. On
the other hand, complicating program structures with basic
block and function-level obfuscations can usually incur a
higher performance penalty, thus can be undesired for some
cases. To obfuscate a particular software, it is generally
challenging to decide which methods in Table 1 to use and
how to apply them. This research proposes to train a DRL
model to rapidly explore the search space and decide an
appropriate combination of obfuscation methods for each
particular software.

4.2 Reward

The reward function is key to reinforcement learning frame-
works in terms of formulating our learning goals: 1) keep
the code appearance as dissimilar to the original program
as possible; and 2) avoid introducing too much execution
cost. As aforementioned, we measure the performance cost
for each step, along with whether the obfuscated code can
largely reduce program similarity. To this end, the reward
function at each step is formalized as follows:

er, —per, 7 .
50— a x w7 if success
perfomg
R=1{-005—qx 2P ons if failure
- ’ DeTf 5rig ’
perf o 1 :
—0.05 — 8 x erf o + 7 X Simitariy otherwise
@

where the obfuscation cost is computed by measuring both
the execution time of obfuscated code (perf ;) and the orig-
inal input (perf ;) w.rt. the same input. We penalize ob-
fuscation transformations in case it leads to high execution
time slowdown. We also measure the program similarity
between the obfuscated result and the input (similarity).
Low similarity score indicates good obfuscation result, and
therefore leads to higher learning reward (see Sec. 6 for how
performance and similarity are measured). We use a small
negative value (—0.05 in our current setting) to penalty for
each transformation. As a result, the model is progressively
trained to find short obfuscation sequence.

We penalize obfuscations such that if the obfuscated

software imposes a large execution overhead, we compute
a low reward score for the agent. Additionally, the perfor-
mance cost depends on the whole obfuscation sequence that
has been applied so far rather than on the last obfusca-
tion, namely, our formulation considers long-term rewards
and progressively infers quality obfuscation sequences. For
long-term reward harvesting, we use a discount rate of
1.0, and therefore, highlight the importance of the last
learning step (where we terminate the episode and decide
the “success” or “failure”). We adopt a dynamic learning
rate initialized with 0.0001 and reduced to a half of itself
every 20 episodes. We follow the common practice to adopt
a e-greedy policy with € decayed from 1.0 to 0.01 (decay
ratio 0.995). € will be fixed at 0.01 thereafter. Hence, the
training starts with balanced exploitation and exploration
while gradually converging to optimal decisions. Overall,
while we follow common and standard practice to decide
these hyperparameters, evaluation results already report
promising findings (see Sec. 6).
Termination. There are two conditions forcing the termi-
nation of an episode. We assign a large positive reward
and terminate the current learning epoch if the obfuscated
code can successfully reduce the similarity score to below
T, implying the success of code obfuscation. We also define
a maximal iteration number N on one episode; when this
iteration is hit, it means that there should be few chances
we can find an optimal obfuscation sequence during this
episode. Hence, we terminate the current episode.

5 IMPLEMENTATION

We implement RLOBF, in total approximate 2,500 lines of
Python code, to directly obfuscate binary executables. To

facilitate the verification of our results, we have uploaded a
snapshot of our codebase to GitHub [10]. We will provide
an official release version with detailed documentation on
reproducing our results, once this paper is officially pub-
lished.

RLOBF consists of two modules to 1) perform reverse en-
gineering and executable file obfuscation (with about 1,500
lines of Python code), and 2) train DRL models to guide the
obfuscation procedure and synthesize optimal obfuscation
sequences (with about 1,000 lines of Python code). In the
DRL module, we use Keras (version 2.3.1) with TensorFlow
(version 2.0) as the backend to develop DRL models.

RLOBF is directly applicable to executable files. That is,
RLOBF does not rely on any specific programming language
and can directly protect closed-source software. The reverse
engineering module is implemented based on a reverse
engineering platform: Uroboros [27], which provides infras-
tructures for executable file disassembling and instrumenta-
tion. We implement the proposed nine obfuscation methods
(see Table 1) as passes in Uroboros.

The prerequisite for binary code obfuscation and in-
strumentation is disassembly; obfuscation is performed to
manipulate the disassembled output into a hardened rep-
resentation. While precise disassembly is known to be hard
in principle, current algorithms have been shown to per-
form very well in practice and to realize fool-proof dis-
assembly of real-world complex software [28], [29], [30].
The Uroboros framework used by RLOBF implements an
advanced disassembling algorithm which has been demon-
strated to smoothly disassemble and instrument commonly-
used Linux applications. Without reinventing the wheel,
in this study, we reuse Uroboros and assume that reverse
engineering is reliable.

Nevertheless, the reverse engineering platform is or-
thogonal to the design of RLOBF, and users can replace
Uroboros with other popular reverse engineering platforms.
For instance, one recent paper in this field, Ramblr [29]
enhances this design and reports better results in a very
effective way. We also note that the underlying disassem-
bling infrastructure of Ramblr, angr [31], is very actively
developed and maintained. angr also has a highly support-
ive community. We agree migrating RLOBF from Uroboros
to Ramblr can presumably induce better implementation,
conducting binary reverse engineering and instrumentation
in a handy way.

Our current implementation of RLOBF, as a research
prototype, is on the basis of Uroboros. We consider the cur-
rent prototype suffices demonstrating the key research idea
and can also smoothly transform coreutils programs on
the Linux platform (both Uroboros and Ramblr evaluated
coreutils programs in their papers). Also, we have al-
ready released RLOBF for the reference and to facilitate
future research [10].

Overall, we consider it as an advantage to promote the
practical usage of the presented technique by directly pro-
tecting executables. To our best knowledge, all non-trivial
and actively-maintained obfuscation tools, including LLVM-
Obfuscator [16], can only process program source code or
particular intermediate representation (IR).

6 EVALUATION
6.1 Evaluation Setup

We first discuss the setup of our evaluation. To evalu-
ate RLOBF, our evaluation dataset is derived from GNU
coreutils (version 8.28), a software set commonly used
by software security research.! This dataset consists of 106
programs which are the “must-have” utilities on Linux plat-
forms. They provide diverse functionalities such as textual
processing, crypto computation, and system management.
We remove those programs with destructive semantics (e.g.,
rm) or relatively simple functionality (e.g, true), resulting
in a set of 48 programs. Without loss of generality, in this
research we randomly pick 20 programs from these 48
programs as the benchmark programs.

Learning Reward. As discussed in Sec. 4.2, we compute
reward during each step of learning w.r.t. reducing program
similarity and retaining low cost. Therefore, we seek for two
types of rewards: similarity and cost. First, for similarity, we
investigate how well the obfuscated software can mislead
the de facto software similarity analyzer, BinDiff [32]. Bin-
Diff is designed as a plugin of the popular commercial de-
compiler, IDA-Pro [33]. Bindiff takes two executable files as
inputs and computes a similarity score to indicate how sim-
ilar they are. BinDiff first leverages IDA-Pro to dissect each
binary executable into functions and reconstruct the CFG of
each function. Then, it performs graph isomorphism-based
comparison [34] to measure the similarity of two functions
w.r.t. their CFGs. The similarity of two executable files is
derived by averaging the function-level similarity scores.
Enabled by its advanced graph isomorphism comparison,
BinDiff has been demonstrated to effectively capture the
program structure-level similarity and widely used by cy-
bersecurity analysts and attackers [23], [24], [25]. We feed
BinDiff with obfuscated executables to compute the simi-
larity score compared with the input executable. Second,
for cost, we measure the performance of (obfuscated) exe-
cutable files by using standard test cases shipped by GNU
coreutils open source project.

Thresholds. To accurately define the reward of RLOBF,
we use two thresholds, i.e., T, representing the similarity
score of deciding the success of an obfuscation procedure,
and N, denoting the longest obfuscation passes that are
allowed to apply. To decide T', we use BinDiff to measure the
similarity of every two programs from coreutils and the
average similarity score between any two programs is 0.68.
It indicates that, when the obfuscated program has a simi-
larity score below 0.68 compared with the input, adversaries
would reasonably treat them as “different” and presumably
lose attack opportunities (e.g., code-reuse attack [9]). Hence,
T is defined as 0.68 in our evaluation. In addition, we set NV
as 20 to limit the maximal number of obfuscation passes.
Moreover, with sufficient training, RLOBF can synthesize
optimal sequences with on average only 11.2 obfuscation
passes.

6.2 Model Training

Our learning and testing were conducted on a server ma-
chine with an Intel Xeon E5-2683 v4 CPU at 2.40 GHz with

1. https:/ /www.gnu.org/software/ coreutils

https://www.gnu.org/software/coreutils

5 4
E 3 g , .§4 E /\/\/w
¢ Akt [B ¢ g 2 AN
5 md5sum oy b2sum -3 — cat - —— tsort
21 sha512sum | £ 0 we 2 comm = Is
S —— uniq S —— sha256sum S5 — dir s 0 — sort
g0 —— shalsum g 5 —— shuf £ —— sum = —— base32
_1 —— base64 — ptx 1 —— expand 5 —— join
0 25 50 75 100 6 25 50 75 100 0 20 40 60 80 100 6 25 50 75 100
Fig. 4. Smoothed reward increases over episodes.
256 GB of memory and two NVIDIA RTX 2080 Graphics
cards. The machine runs Ubuntu 18.04. 1.0
We train an RL model for each program binary code, and 0.40 Histogram
we set the maximal episode as 100. When training, we fine- Cumulative 108
tuned three parameters (, 7y, and) used in defining the re- 0.30 Histogram
ward. Overall, we report the average range of performance 0.6
. perf, . . .
ratio (71767:7(‘0:2) falls within [1.00, 10.83], and after applying 3, 0.20
this term is in the range of [0.37,4.06]. The similarity ratio 0.10 0.4
1
(W) is in the range of [0.41, 0.86], 'and after applying
7, it is in the range of [0.38,0.79]. We interpret that after
applying the coefficient for smoothing, cost and similarity 0.007g 20 40 60 80 100
factors contribute comparably. Average Performance Overhead (%)
Our experiment takes approximate on average 11.2 0130 Histogram 1.0
hours for training one case. Fig. 4 reports the reward 0.125 _
increase with respect to episodes. Overall, the evaluation Elfsrpo‘gf:r\ée 08
results are promising. Test cases, despite their diverse func- 0.100 0.6
ti.onality (e;.g., sl.la51 ?sum imp}ements crypto hash algo- 0.075 '
rithms while wc is a file processing program), all test cases 0.4
manifest roughly consistent behaviors during training. The 0.050 '
cumulative reward keeps increasing and the convergence 0.2
. . 0.025 :
happens around 60 episodes. Indeed, we report that with
sufficient training, RL model can find well-performing ob- 0.000"5 : 10 s

fuscation sequences for all the test cases.

6.3 Exploring Optimal Sequences

We collect the synthesized optimal obfuscation sequences
for further studies. Fig. 5 reports the distribution of the
average length of optimal sequences and the corresponding
average slowdown on executables obfuscated by optimal
sequences. For all the evaluated 20 programs, the average
length of obfuscation sequences is 11.2 and the correspond-
ing performance overhead is only 18.8%.

Our trained models successfully find well-performing
obfuscation sequences in terms of similarity score and per-
formance. As shown in the cumulative histogram in Fig. 5,
70.0% cases have less than 20.0% performance overhead,
when applying the optimal obfuscation sequences. We also
report that 75% optimal sequences contain more than 10
obfuscation passes, indicating a diverse sets of obfuscation
traces are generated. The promising result demonstrates
that the proposed technique synthesizes diverse and highly-
efficient obfuscation sequences toward executable files.

Recall the implemented obfuscations can be put into
three categories regarding levels of program structures they
focus (cf. Table 1). To study the preference of well-trained
models, we compute distribution in terms of these three
categories from the produced optimal sequences in Table 2.

Average Sequence Length

Fig. 5. Exploring optimal obfuscation sequences in terms of average
cost and sequence length.

TABLE 2
Distribution of optimal sequences according to obfuscation category.

Basic Block Level
83.2%

Function Level
11.3%

Instruction Level
5.5%

The result shows that basic block-level obfuscations
dominates the optimal sequences, because it can signifi-
cantly obfuscate programs without introducing too much
overhead. As introduced in Sec. 4.1, basic block-level trans-
formations manifest a good balance between effectiveness
and cost, by adding additional edges on the control graph
to defeat the graph isomorphism-based similarity analysis
in BinDiff, while does not overly change program struc-
tures. Function-level obfuscations, in particularly function
inline, are also reasonably adopted given its effectiveness
in complicating program control structures. In contrast,
we find that control flow flattening, by largely flattening
the control-flow graph of a function (see Fig. 2), overly
imposing performance overhead and are usually excluded

from optimal sequences. Function reordering obfuscation
is also undesired. As aforementioned, BinDiff computes
the “similarity” of two binary executables, by first measur-
ing the graph isomorphism-based similarities of functions.
While function reordering obfuscation swaps the relative
positions of two functions, it does not change the control-
flow graph of each function, thus engendering trivial effect
on BinDiff. Similarly, instruction-level obfuscation methods
do not primarily change program structures, thus are rarely
used in optimal obfuscation sequences.

6.3.1 Optimal Sequences Across Different Programs

We further investigate on how different obfuscation se-
quences are across different binaries. To this end, we study
if there exist some common obfuscation sequences that are
generally effective in most binaries in the dataset. Table 3
reports the top-three obfuscation sequences inducing the
highest accumulated learning rewards for each test case.
High accumulated rewards indicate low incurred overhead,
and therefore, these top-three obfuscation sequences can be
mostly desired by users. On the other hand, we also note
that since almost all obfuscation passes randomly select
code components for transformation (see Sec. 4.1), using
the same sequence of obfuscations can still induce different
obfuscated executable files. We now interpret Table 3 from
the following aspects.

Overall, basic block-level obfuscation methods, in partic-
ularly BFI (branch function insertion), are frequently used
in forming common obfuscation sequences. We interpret the
results as highly consistent with our aforementioned dis-
tributions (i.e., basic block-level obfuscations occupy 83.2%
optimal sequences). Basic block-level obfuscations gener-
ally outperform instruction- and function-level obfuscation
methods given its balanced cost and effectiveness. In partic-
ular, BFI, by changing x86 jump instructions into function
calls, exhibits noticeable effectiveness in defeating the simi-
larity analysis of BinDiff. As previously mentioned, BinDiff
conducts a graph isomorphism-based similarity analysis,
where changes on the control flow graph and call graph
would largely impede the analysis and reduce the similarity
score. More importantly, BE I does not impose too much cost
on the transformed binary code, hence is frequently picked
by the RL agent when transforming most binary code. While
FIL (function inline) is adopted by a number of programs
(e.g., sha512sum, base64), this obfuscation method seems
particularly effective to process b2sum, reducing the simi-
larity score below 0.68 with only one pass. Our study shows
that FIL inlines a frequently invoked function, rotré64,
into its in total 384 callers. Also, after inlining this function,
our method changes the function return opcode ret into
pop ecx; Jmp ecx, which can be mistakenly treated as
function exit points by IDA-Pro. This would induce broken
recovery of function boundary information, thus largely im-
peding BinDiff’s graph isomorphism-based similarity anal-
ysis.

We note that while most optimal obfuscation sequences
are distinct, we still observed some similar patterns. Note
that while coreutils programs have generally distinguish
functionalities, many coreutils programs are statically
linked to a large coreutils library which subsumes some
common functionality and utilities. Our observation shows

that obfuscating functions from this static coreutils li-
brary could likely induce identical obfuscation sequences.

We also observed an outlier in Table 3. Optimal obfus-
cation sequences generated on md5sum seems inconsistent
with others by frequently employing OPA (opaque predi-
cate insertion) instead of BFI. This is anti-intuition, given
that the inner workings of crypto hash algorithm mdS and
shal are highly similar. Indeed, our observation on the
coreutils implementation of md5sum and shalsumshow
that they share mostly identical code blocks. At this step,
we carefully analyzed and identified root causes inducing
inconsistent obfuscation sequence generation on md5sum
and shalsum.

l . OPA
"r:et;
(1058)
(22
(2069) L]
L

(a) md5sum -- mdS_process_block (b) shalsum -- shal_process_block

Fig. 6. Comparing obfuscation passes applied toward the md5_-
process_block function of md5sum vs. the shal process block
function of shalsum.

Fig. 6 presents and compares the code components that
induce the key difference of optimal sequences. Two code
chunks in Fig. 6(a) and Fig. 6(b) represent the main loop
of conducting hash computation in md5sum and shalsum,
respectively. In particular, md5sum leverages a loop, the
bottom right basic block in Fig. 6(a) with 1058 instructions,
to iteratively compute the crypto hash. In contrast, Fig. 6(b)
shows that the corresponding hash loop of shalsum is
slightly more complex, in the sense that a large portion
of loop iterations are undertaken by a small basic block
with only 22 instructions. This notably reduces the execution
cost of shalsum, and as a result, RL model has to use
relatively lightweight obfuscation methods for shalsum
to retain low performance penalty in the reward function

(ie., — % ; see Eq. 1). Nevertheless, md5sum takes
oris

longer execution time (i.e., a larger perf,,,,), and therefore,
imposing relatively heavyweight obfuscation method (i.e.,
OPA) would thus incur less relative increase on the perfor-
mance cost (since the divisor in —% is already
very large). Indeed, we report that the ngagent tends to
translate the highlighted edge in Fig. 6(a) with OPA, while
translating two highlighted edges in Fig. 6(b) with BFI.

6.3.2 Comparing with Randomly Constructed Sequences

To understand the quality of optimal sequences generated
by RLOBF, we also compare the optimal sequences with
randomly constructed sequences. To setup the comparison,

TABLE 3
Top 3 frequently-used optimal obfuscation sequences for each test case. The abbreviations are described in Table 1.

Programs Optimal obfuscation sequences
FIL

b2sum FIL
FIL
OPA,BBS,BFI,BFI,BFI,BFI,BFI

base32 OPA,IR,GRA,IR,BFI,BFI,BFI,BFI

OPA,IR,BBS,BFI,BFI

CFA,CFA,BFI,BFI,BFI,BFI,BFIFR,BFI,BFI,BFI,BFI,BFI,BFI,BFI
base64 CFA,OPA,CFA,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
BBR,FIL,BFI,BFI,BFI,BFI,BFI

CFA,IRBFIBFIBFIBFIBFIBFIBFI,BFI

cat CFA,IR,BFI,BFI
CFA,IR,BFI
OPA,IR,BFI

comm OPA,IR,IR,BFI,BFI,BFI,BFI

OPA,IR,IR,BFI,BFI,BFI,BFI,BFI,BFI

GRA,BBS,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
dir GRA,BBS,BFI,BFI,BFI,BFI,BFI,BFI
GRA,BBS,BFI,BFI,BFI,BFI,BFI,BFI,BFI

BBR,BFI,BFI,BFI,BFI,BFI
expand IR,BBR,BFI,BFI
IR,BBR,BFI,BFI

FIL,GRAFIL,BFI,BFI,BFI,BBRBFI,BFI,BFI,BFI
join FIL,GRAFIL,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
FIL,GRAFIL,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI

CFA,BBS,BBS,BFI,BFI,FR,BFI,BFI,BFI
1s CFA,CFA,BBS,BFI,BFI,BFI,BFI
CFA,BBS,BBS,BFI,BFI,BFI,BFI,BFI,BFI,BFI

BBR,0OPA,0PA,0PA,0PA,0PA,0PA,OPA,0PA,0PA,0PA,OPA,0PA,0PA
md5sum BBR,0PA,0PA,0PA,0PA,0PA,0PA,0PA,0PA,0PA,0PA,OPA,0PA,0PA
BBR,0PA,0PA,0PA,0PA,0PA,BBS

GRA,BBS,BFI,BFI,BFI,BFI
ptx BBS,BBS,BFI,BFI,BFI,BFI
BBS,BBS,BFI,BFI,BFI,BFI,BFI

GRA,CFA,BFI,IRBFI,BFI,BFI,BFI
shalsum OPA,BFI,BFI,IRBFI,BFI,BFI,BFI,BFI,BFI
OPA,CFA,IR,BFI,BBS,BFI,BFI

BBR,BBR,IR,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
sha256sum | CFA,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
BBR,BBR,CFA,BFI,BFI,BFI,BFI,BFI,BFI,BFI

BBR,FIL,FILFILFILFILFILFILFILFILFILFILFILFILFILFIL
sha512sum | BBR,FIL,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
BBR,BFI,BFI,BFI,BFI,BFI,BFI

CFA,BFI,BFI,CFABFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
shuf CFA,CFA,BFI,FR,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
CFA,FR,CFA,BFI,BFI,BFI,BFI,BFI,BFI,BFI

BFI,BFI,BBS,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
sort BFI,BFI,IR,BFI,FR,BFI,BBS,BFI,BFI,BFI,BFI
BFI,CFA,BFI,BFI,BFI,BFI,CFA,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI

CFA,BBR,CFA,OPA,0PA,BBR,0PA,0PA,OPA,BBR,BBR,BBR,BBR,BBR,BBR,BBR,BBR,BBR,BBR
sum CFA,OPA,OPA,0PA,0PA,0PA,OPA,OPA,BBR,BBR,BBR,BBR,BBR
CFA,OPA,BBR,BBR,BBR,0PA,0PA,BBR,BBR,BBR,BBR,BBR,BBR,BBR,BBR

IR,BFI,BFI,BFI,BFI
tsort IR,BFI,BFI,BFI
IR,BFI,BFI

GRA,IR,BFI,BFI,BFI,BFI,BFI,BFI,BFI
uniq GRA,CFA,IR,BFI,BFI,BFI,BFI
GRA,IR,BFI

CFA,BBS,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
we CFA,BBS,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI,BFI
CFA,BBS,BFI,BFI,BFI

10

TABLE 4
Program CFG complexity before and after applying obfuscations.

of Basic Blocks

of CFG Edges Cyclomatic Number

Programs Original | Obfuscated | Increase (%) | Original | Obfuscated | Increase (%) | Original | Obfuscated | Increase (%)
b2sum 1385 4154 200.0 2993 8465 182.8 1610 4313 167.9
base32 1037 1372 324 1522 1935 27.1 487 564 15.7
base64 1006 1187 18.0 1470 1868 27.1 466 683 46.4
cat 882 961 9.0 1345 1749 30.0 465 789 69.9
comm 919 1011 10.1 1436 1934 347 519 925 78.1
dir 4309 5278 22.5 6890 8029 16.5 2583 2752 6.6
expand 889 1064 19.7 1247 1430 14.7 360 368 2.3
join 1227 1629 32.8 2007 12716 533.6 782 11088 1318.0
1s 4309 5604 30.1 6890 8217 19.3 2583 2614 1.2
md5sum 1059 1878 77.4 2378 6649 179.6 1321 4772 261.3
ptx 2138 2743 28.3 3344 3978 19.0 1208 1236 24
shalsum 1062 1332 25.5 2382 2730 14.6 1322 1400 5.9
sha256sum 1070 1262 18.0 2390 2724 14.0 1322 1463 10.7
sha512sum 1076 1475 37.1 2401 6545 172.6 1327 5072 282.2
shuf 1548 1763 13.9 2560 2884 12.6 1014 1122 10.7
sort 3279 3841 17.2 5563 7026 26.3 2286 3186 39.4
sum 1079 2765 156.3 1526 5295 247.0 449 2531 463.8
tsort 877 962 9.8 1200 1680 40.0 325 719 121.2
uniq 1057 1152 9.0 1964 2340 19.2 909 1190 30.9
we 1203 1519 26.3 2115 2546 20.4 914 1028 12.5
average 1570 2148 39.7 2681 4537 82.6 1112 2391 147.4
promptly explore the search space and identify optimal ob-
T opumal Seduence fuscation sequences, outperforming randomly constructed
andom Sequence . 4
1.0 sequences where considerable runtime overhead could be
introduced.
0.8
° 6.4 Complexity of Obfuscated Programs
2 0.6
5 To further study the complexity of our obfuscation result,
° we measure the complexity in terms of program control
041 structure changes [26], [35], [36]. For this evaluation, we use
three metrics to measure the program complexity: Number
021 of Basic Blocks, Number of CFG Edges, and Cyclomatic Num-
ber. We write plugins for the commercial decompiler, IDA-
0.0 v " Pro [37], to disassemble the executable files before and after
* X & S O . . .
,vrfc,e?’lé’ S TS E T N ST o using obfuscation and generate each corresponding control
FFFE € & P
N e structure. Then, we traverse the control structures to record

Fig. 7. Comparing overhead with randomly constructed sequences.

we randomly and iteratively apply obfuscation sequences
toward an executable file until the similarity score reduces to
the same threshold (i.e., 0.68). We then measure the perfor-
mance cost induced by these randomly constructed obfus-
cation sequences, and compare with overhead incurred by
optimal obfuscation sequences constructed by RLOBF. Fig. 7
reports the comparison results. Overall, RLOBF can con-
sistently identify optimal obfuscation sequences to achieve
the same amount of similarity reduction, while inducing
much lower performance penalty. For instance, for join,
we report that to achieve comparable reduction of simi-
larity score, randomly constructed sequences introduces 1.6
times more execution slowdown. Even worse, for cases like
base64 and sha512sum, randomly constructed sequences
induce about 7.6 times more overhead compared with
obfuscation sequences generated by RLOBF. Overall, we
interpret that this evaluation illustrates strong evidence that
enabled by reinforcement learning techniques, RLOBF can

the number of basic blocks and edges for each program.
Cyclomatic number [38] shows the overall complexity of
CFG. It is defined as e—n+2, where e and n are the numbers
of edges and basic blocks in the CFG, respectively.

Table 4 reports the CFG complexity evaluation. We
measure programs obfuscated with synthesized optimal
sequences, and its corresponding original inputs. We also
report the increase percentage w.r.t. the original inputs.
The obfuscated programs have largely outperformed their
corresponding reference inputs, by achieving a much higher
data in terms of each criterion. Obfuscated programs exhibit
consistent increase of CFG complexity, compared to their
original inputs. In particular, the improved basic block count
can be up to 200.0% (for the b2sum case), with the average
ratio is 39.7%. Similarly, join achieves the highest increase
ratio in terms of cyclomatic number, and over half test cases
have a cyclomatic number increase of 20%, indicating an
encouraging increase of CFG complexity.

Table 4 shows that programs exhibit inconsistent in-
crease in terms of CFG complexity. Despite the fact that the
original program binaries have different number of basic
blocks and edges, one key reason is that when analyzing
the CFG of some obfuscated programs with IDA-Pro, due

11

to the applied obfuscation passes, IDA-Pro makes a large
number of reverse engineering failures and neglects to count
a number of basic blocks and edges in the obfuscated
binary code. We give further discussion and quantitative
assessment regarding this issue in Sec. 6.6.2 and Table 6.

6.5 Stealth of Obfuscated Programs

Besides complexity, stealth is another crucial property of ob-
fuscated software. Stealth assesses the difficulty with which
the obfuscation can be discovered. To evaluate stealth, we
measure whether our obfuscation techniques introduce any
abnormal statistical characters or code patterns that can be
used to uncover obfuscation [12]. Particularly, we adopt a
metric called instruction distribution [35], [39], which mea-
sures the ratio of different types of instructions. At this step,
we group x86 instructions into 26 categories and calculate
the distribution.

10° 4 —
—&— Original ;
—e- Avg Obfs
) 1
© 107" 4
]
: 1 1
s)
=
1
2 1072 -]
S I
B | I ¢
g i g
a []
£ 1073 4 { 1
k]
()
o
©
€ L
¢ 1074
; !
[
a
10-5 4
mmumnxmjaamnx35*35‘330!5-09_0(\
2% 8838588 REEZER3EAREZEE7 3

Fig. 8. Instruction distributions before and after obfuscations.

Fig. 8 reports the instruction distribution by taking all
input programs and programs obfuscated with optimal se-
quences into account.” For each instruction category, “Orig-
inal” shows the range of distributions in original programs,
while each red dot denotes the distribution of a particu-
lar instruction category within an obfuscated program. In
general, we interpret that obfuscated programs exhibit con-
sistent trending with the input programs. In other words,
obfuscated programs are stealth enough and attackers can
hardly notice the usage of RLOBF.

A spike of mul (i.e., multiply) instructions can be found
in the obfuscated programs. Similarly, push and pop in-
struction distributions are also increased after obfuscation.
Accordingly, mov instructions have a decreased portion in
the obfuscated programs. Overall, obfuscation reasonably
increases certain instruction categories, for instance mul is
employed to construct the opaque predicates, while push
and pop instructions are frequently used to access new
local variables. Similarly, the distribution of xchg is also
increased, given its usage in garbage code insertion obfus-
cation (see Sec. 4.1). It is worth noting that C programs can

2. Instruction distribution for each individual program can be found
here [11]. Overall, all programs show consistent findings.

12

TABLE 5
ROP gadget elimination rate.

Programs Elim. Rate% Programs Elim. Rate%
b2sum 93.4 base32 88.5
base64 88.6 cat 86.9
comm 87.0 dir 96.2
expand 87.4 join 88.9
1s 96.2 md5sum 87.9
ptx 91.5 shalsum 88.9
sha256sum 90.7 sha512sum 94.0
shuf 90.5 sort 94.7
sum 89.5 tsort 85.4
uniqg 89.1 weC 87.7

be compiled into x86 assembly of only mov instructions [40].
As one future work, we envision the opportunity to further
tune the distribution by substituting certain instructions
(e.g., mul or xchg) with their semantics-equivalent mov
instruction sequences.

6.6 Security Impact
6.6.1 Resiliency to Code Reuse Attacks

To evaluate the security impact of our technique, we first
measure its resiliency to code reuse attacks [26], [41],
[42]. We evaluate how well our obfuscation technique can
eliminate Return Oriented Programming (ROP) attack gad-
gets [9]. ROP attack is a de facto program exploitation which
manipulates program call stacks and chains sequences of
victim program’s own code snippets (named ROP gadgets)
to perform exploitations [9], [43]. To conduct such attacks,
e.g., toward the Firefox browser on the victim’s remote
computer, the general procedure is to first extract memory
addresses of ROP gadgets from a local Firefox browser and
construct an attack payload, subsuming a sequence of ROP
gadget addresses used to perform the attack. Then, the
attacker sends this payload to the victim’s computer and
exploits the same Firefox broswer by executing each ROP
gadget noted on the payload [26], [42], [44], [45], [46]. Soft-
ware obfuscation helps to defeat ROP attacks by changing
memory addresses of gadgets or breaking their instruction
sequences in the obfuscated program, so that attackers can-
not reuse these gadgets in their payload. Hence, the security
impact of our obfuscation technique can be measured by
counting how many ROP gadgets in the obfuscated code
no longer stay in its original locations. We adopt a popular
ROP gadget harvesting tool, ROPGadget [47], to search for
ROP gadgets before and after our obfuscation.

Table 5 reports the ROP gadget elimination rate in our
testbed. Let Gorig and Gop¢ denote two sets of ROP gadgets
found from the input executable file and its corresponding
obfuscated executable, respectively. Then, the ROP gadget
elimination rate is defined as 1 — % The
evaluation result is highly encouraging: ROP Vgadgets can
be eliminated by up to 96.2% (the dir and 1s cases), and at
least 85.4% (the t sort case). The average elimination rate is
90.1%. In other words, less than 10.0% of the attack surface
still remains, indicating a very low chance for attackers to
exploit ROP gadgets in programs obfuscated by RLOBF.

Also, we note that some recent work has demonstrated
the feasibility of conducting ROP attacks, without the pre-
knowledge of ROP gadgets. In other words, ROP gadgets

TABLE 6
Obfuscation complexity imposed on C decompilation.

Programs # of Functions # of Unreachable Instructions # of Decompilation Error

Original | Obfuscated | Increase (%) | Original | Obfuscated | Increase (%) | Original | Obfuscated | Increase (%)
b2sum 247 633.6 156.5 748 881.6 17.9 1 2.0 100.0
base32 210 288.6 374 757 2005.8 165.0 1 39.9 3890.0
base64 211 265.3 25.7 756 1529.2 102.3 1 11.1 1010.0
cat 196 2245 14.5 675 1021.5 51.3 1 7.6 660.0
comm 195 223.6 14.7 700 1252.7 79.0 1 6.2 520.0
dir 575 647.1 12.5 1692 3088.2 82.5 1 112.0 11100.0
expand 196 266.5 36.0 661 1659.2 151.0 1 17.8 1680.0
join 231 298.7 29.3 679 2062.8 203.8 1 26.2 2520.0
1s 575 674.6 17.3 1692 3549.7 109.8 1 115.9 11490.0
md5sum 210 272.5 29.8 690 3336.8 383.6 1 1.8 80.0
ptx 284 353.9 24.6 905 2096.2 131.6 1 58.1 5710.0
shalsum 210 2849 35.7 690 2065.8 199.4 1 17.1 1610.0
sha256sum 214 281.0 31.3 788 2002.7 154.1 1 17.6 1660.0
sha51l2sum 214 293.5 37.1 788 25028.0 3076.1 2 18.8 840.0
shuf 305 403.7 324 1284 2843.4 121.4 1 40.0 3900.0
sort 528 621.0 17.6 1667 3183.7 91.0 1 53.4 5240.0
sum 212 283.4 33.7 756 2086.7 176.0 1 34 240.0
tsort 194 218.7 12.7 747 1235.8 65.4 1 6.5 550.0
uniqg 220 264.8 20.4 721 1618.1 1244 1 11.7 1070.0
weC 245 311.2 27.0 795 1641.6 106.5 1 41.9 4090.0
average 273.6 355.6 32.3 909.5 3209.5 279.6 1.1 30.5 2898.0

can be discovered from the remote victim software and TABLE 7

chained to launch attacks on the fly [48], [49]. Nevertheless,
we note that obfuscation is still the basis of advanced
protection schemes against JIT-ROP [49], [50], [51], [52], [53],
[54]. For instance, the mainstream defense method against
JIT-ROP, Execute-no-Read (XnR) [52], [53], [54], changes
the process memory space of protected software as non-
readable but executable-only. Therefore, attackers can on
longer inspect the protected process during runtime. To
implement such scheme, the protected software needs to be
obfuscated first, preventing attackers from resorting to use
the pre-constructed ROP payloads.

6.6.2 Resiliency to C Decompilation

In addition to quantify the complexity of the obfuscated
programs, we also explore the complexity and resiliency
of obfuscation through the lens of adversarial reverse en-
gineering. Overall, as one primary goal of software obfus-
cation is to impede hackers to conduct adversarial static
analyses such as reverse engineering, we decide to use
the IDA-Pro decompiler to decompile the obfuscated code
and assess the quality of decompiled C code. For each
coreutils test program, we randomly select five binary
code obfuscated by optimal sequences, and further conduct
decompilation with IDA-Pro.

A common decompilation evaluation metrics, named
“structuredness” [55], counts the number of goto state-
ments, to decide the complexity of the obfuscated programs.
However, we note that when decompiling the binary code
with our recent version of IDA-Pro (ver. 7.0), the number
of goto statements in the C code seem to be very low,
and does not primarily change with respect to obfuscation
imposed. Instead, our finding shows that with obfuscation
applied, IDA-Pro has primary difficulty of correctly iden-
tifying function boundaries, even if we do not trim off the
symbol information from the binary code (i.e., we feed
unstripped binary code to IDA-Pro).

We summarize two key observations when using IDA-
Pro to decompile obfuscated binary code: 1) some instruc-

Decompilation error messages.

Error message #error in orig. | #error in obf.
“found positive sp value” 29 5008
“too big function” 1 12
“call analysis failed” 0 4946
“switch analysis failed” 0 8
“function frame is wrong” 0 2

tion sequences, particularly control transfer targets of indi-
rect jumps, does not belong to any function, and 2) IDA-
Pro identifies much more “functions”, by treating certain
instruction sequences as function entry points in a mistaken
way. We quantitatively measure and illustrate the first and
second observations in Table 6. We also report the number of
errors directly encountered when decompiling obfuscated
code in the last three columns of Table 6. As shown in
Table 6, obfuscation is indeed significant in impeding IDA-
Pro’s decompilation, given that IDA-Pro recovers average
32.3% more functions (only BFI would introduce one func-
tion for each pass), indicating that many instructions are
mistakenly treated as “function exit points”, incorrectly in-
ducing new “function entry points” at the adjacent instruc-
tions. Similarly, the control transfer destinations of indirect
jump instructions introduced by our obfuscation introduce
more challenges in recovering intra-procedure control flow
graphs. As a result, many instruction sequences that can
be reached by only indirect jumps would not be taken into
account when forming the control flow graph of obfuscated
programs. We note that the difficulty of analyzing indirect
jump targets indeed induces the underestimation of control
flow complexity in the obfuscated code (see Table 4), since
when counting the number of basic blocks and edges, we it-
erate every function recovered by IDA-Pro and then traverse
its intra-procedural control flow graphs to count nodes and
edges.

We collect errors thrown by IDA-Pro and report the av-
erage number of errors when decompiling an obfuscated bi-
nary code in Table 6; note that IDA-Pro typically would not

13

“halt” or terminate the decompilation when ecountering er-
rors, but would place a comment in the decompiled C code
for each decompilation error. We compare error comments
thrown by decompiling the original binary code and obfus-
cated binary code in Table 7. While it is generally difficult to
analyze the root cause of these decompilation errors (IDA-
Pro is a “blackbox” with no source code available), these
error messages are mostly self-explainable. One major issue,
“positive sp value”, indicates defects in analyzing stack
pointer register. Errors of this category likely occur during
the local variable recovery stage. Another major issue, “call
analysis failed”, possible implies defects throw during the
call graph recovery stage of IDA-Pro. As aforementioned,
obfuscation methods introduce considerable indirect jump
instructions, which presumably imposes high challenges of
control flow analysis.

0.6{ EEE original

top-5

0.56
0.5
0.41

0.4

CcT RA others

Fig. 9. Opcode type distribution in “top-5” contributors of model predic-
tion and in original programs. For the ease of presentation, we classify
x86 opcodes into four types regarding their holistic semantics. “CT”
represents control transfer opcodes. “SA” subsumes opcodes for stack
accesses. “RA” subsumes opcodes for register assignments. “Others”
(e.g., arithmetic) subsume opcodes that are not related to control trans-
fer, stack access, or register assignments.

6.7

In this section, we conduct permutation feature importance
analysis to interpret the decisions of well-trained DRL
models [56]. Permutation feature importance estimates the
importance of a given feature, by randomly shuffling the
feature and measuring how much the model prediction can
be influenced. Being agnostic toward the specific model
implementations, this technique has been widely-used to
“debug” black-box models. Here, we use a popular im-
plementation of this technique, namely TextExplainer, to
interpret the results of our trained models.?

TextExplainer takes a trained model and model inputs
(in our case it is a sequence of opcodes) as its inputs. It
calculates the importance of different opcodes w.r.t. deci-
sions (i.e., selecting which obfuscation) made by the model.
TextExplainer makes extensive permutation toward the op-
code sequences, and our tentative test shows that if we feed
opcode sequences of the entire program (typically around
20K opcodes in one input) into TextExplainer, it takes too

Interpretation of Model Decisions

3. https://eli5.readthedocs.io/en/latest/ tutorials /black-box-text-
classifiers.html

14

TABLE 8
Average performance overhead incurred by optimal obfuscation
sequences under different similarity thresholds T'. As reported in
Sec. 6.1, T' = 0.68 is our default setting for experiments.

Threshold T 0.48 0.58 0.68 0.78 0.88
expand 31.6% 21.6% 10.6% 10.1% 5.9%
1s 28.6% | 27.8% | 151% | 10.2% 3.5%
ptx 65.8% | 44.4% | 31.0% | 14.9% | 12.6%
shalsum 19.2% | 13.9% | 184% | 6.0% 3.8%
average 36.3% | 269% | 17.5% | 10.3% | 6.3%

long time to finish. Therefore, we instead feed function-
level opcode sequences into TextExplainer. Accordingly, for
this evaluation, we tweak RLOBF to let it take opcodes of a
function for obfuscation.

Recall given a sequence of opcodes, the trained model
will select one obfuscation to use, aiming at achieving
high effectiveness with low cost. TextExplainer assigns each
opcode an importance score, implying their contribution to
the prediction. To understand “top contributors”, we feed
opcode sequences of all functions (in total 3,360 functions
from 20 cases) from our dataset, and collect the top-5
contributors to each prediction. We present the distribution
in terms of opcode types in Fig. 9. To compare with, we
also measure the distribution of opcode types within these
function-level opcode sequences (on average each sequence
has 67.2 opcodes).

As shown in Fig. 9, while opcode related to control
transfers (e.g., jmp) has a relatively low portion in normal
programs, they are critical in predictions. Opcodes related to
control transfers primarily affect the program control struc-
tures, and since BinDiff performs graph isomorphism-based
similarity analysis, a well-trained model would naturally
focus on those control transfer opcodes to defeat BinDiff
effectively. In contrast, while opcodes related to register-
level operation (e.g., mov which moves data to a register)
extensively exist in x86 assembly code, they contribute no-
tably less in predictions. Another interesting finding is that,
instructions in the “others” category have higher portion in
top-5 contributors of model predictions. These instructions
mainly perform arithmetic computation such as add or sub.
With further investigation, we observe that many of these
arithmetic opcodes are used to compute the opaque predi-
cate conditions inserted by previous obfuscation passes (see
Fig. 2 for an example of opaque predicts). When they are
shuffled by TextExplainer, those opaque predicates may be
relocated to other places, disabling the execution of certain
code fragments while enabling the execution of junk code
guarded by the opaque predicates. By largely affecting
performance, “others” play an important role in the model
decision. In summary, we interpret the model interpretation
reports encouraging and intuitive observations: the trained
model can pinpoint critical features on program control
structures, thus effectively making program dissimilar.

6.8 Adjusting Similarity Threshold

For the prototype implementation of RLOBF, we decide to
train the model from scratch to highlight the key contri-
bution and novelty — synthesizing effective and low-cost
obfuscation sequences with DRL. To do so, we follow a gen-
eral assumption to simultaneously take code similarity and

https://eli5.readthedocs.io/en/latest/tutorials/black-box-text-classifiers.html
https://eli5.readthedocs.io/en/latest/tutorials/black-box-text-classifiers.html

execution slowdown as the learning reward. Our learning
reward uses several parameters to weight contributions of
code similarity and performance. As reported in Sec. 6.2,
by applying the coefficient for smoothing, we make the cost
and similarity factors contribute comparably in designing a
generic learning reward.

Nevertheless, we also envision the opportunities to in-
corporate domain-specific considerations to fine-tune the
learning reward and promote model training. For instance,
to protect security-sensitive programs with high obfuscation
strength, we could decrease our current similarity threshold
0.68 (see evaluation setup at Sec. 6.1). This way, we an-
ticipate the RL agent can be trained to harvest the power
of heavyweight obfuscation methods on protecting such
security-sensitive programs, for which a relatively higher
cost could be incurred. Similarly, to protect cost-sensitive
software (e.g., games), we could increase the similarity
threshold 0.68 (e.g., into 0.78) to stop applying obfuscation
methods at an earlier stage.

Overall, envisioning the importance of fine-tuning pa-
rameters in real-world usage scenarios, this section con-
ducts further evaluation to study how different similarity
threshold can affect the synthesized optimal obfuscation
sequences. As shown in Table 8, we decrease the similarity
threshold from the default setting 0.68 to 0.58 and 0.48, em-
ulating scenarios of protecting security-critical applications:
users are seeking higher-level of protection and willing
to trade more cost. Similarly, we increase the similarity
threshold from 0.68 to 0.78 and 0.88, emulating scenarios of
protecting cost-sensitive applications by trading obfuscation
effectiveness for less performance penalty. We randomly
select four coreutils programs from our program set and
re-train RL agents for each test program under different
settings. We record and report the average performance
overhead incurred by optimal obfuscation sequences in
Table 8. Overall, we interpret that all test cases exhibit con-
sistent performance overhead in terms of different similarity
threshold. For instance, for cost-sensitive scenarios, setting
a higher similarity threshold (e.g., 0.78) can notably reduce
about half extra performance overhead of ptx (from 31.0%
to 14.9%). Similarly, for security-critical scenarios, our RL
agent can find optimal obfuscation sequences to reduce
similarity score from 0.68 to 0.48 by only trading 5.8% more
performance overhead (from 13.4% to 19.2%). Also, we note
that when similarity score is set as 0.48, a considerable
number of optimal obfuscation sequences have over 15
passes, and some of them have even more than 20 passes. In
contrast, all optimal obfuscation sequences synthesized un-
der other similarity thresholds contain less than 20 passes.
This is intuitive; aiming at lower similarity scores (e.g., 0.48)
forces the RL agent to iteratively apply more obfuscation
passes to the input program. In our released RLOBF, we
make the similarity threshold as a configurable parameter,
whose value can be decided by users under different real-
world usage scenarios.

7 DISCUSSION

Binary code similarity is taken to compute the learning
reward of our RL model. To this end, we use BinDiff, an in-

15

dustrial strength binary similarity analysis tool to compute
a program-wise similarity score for each learning iteration.

BinDiff conducts a graph isomorphism-based similar-
ity analysis, which is shown as robust to certain level of
program changes; the score is also efficient to compute.
Nevertheless, we have observed the progressive develop-
ment of binary similarity analysis techniques leveraging
various semantics (in terms of data flow facts) features.
Such semantics features are either computed from rigorous
symbolic execution-based techniques [57], [58], or leverage
advanced software embedding and graph neutral network
models [59]. Nevertheless, we note that such advanced
binary similarity techniques do not fit our scenario. Overall,
such semantics-based techniques deem to be obfuscation-
resilience, and hence would retain a close to 1.0 similarity
score, no matter what kind of obfuscation is applied. As a
result, the semantic similarity score cannot be used for calcu-
lating the reward in our method. Hence, we skip to leverage
such advanced albeit more heavyweight semantics-based
binary diffing tools in training RLOBF. We give further of
these related research in Sec. 8.

8 RELATED WORK

Code Obfuscation. Existing obfuscation techniques, in gen-
eral, aim at transforming programs to impede either static or
dynamic reverse engineering. To combat static reverse engi-
neering, various techniques have been proposed and range
from simply using XOR masks to obscure code snippets to
heavily changing the program control-flow structures [26].
Similar to compiler optimizations, the scope of these obfus-
cation varies in granularity from single instructions to the
entire program. We have introduced obfuscation schemes
that complicate program control structures in Sec. 2.1. In ad-
dition to transformations toward program code section, data
encoding techniques [3] translate program data sections into
oblivious representations. Furthermore, malware authors
frequently use obfuscation techniques, including various ad
hoc transformations and (homemade) crypto algorithms, to
pack their malware samples prior to distribution and to
avoid detection by anti-malware scanners [7], [60].

To thwart dynamic reverse engineering such as symbolic
and concolic execution, techniques have been proposed for
either substantially inflating execution paths within the pro-
gram or crafting constraints that are extremely difficult for
an SMT solver to check [61], [62], [63]. Advanced obfusca-
tion techniques are proposed to incorporate a process-level
virtual machine that rewrites an input program into byte-
code instructions that are customized for an interpreter [64],
[65], [66], [67]. During runtime, the bytecode is emulated
by a virtual machine interpreter. The obfuscated output can
effectively hamper dynamic analysis with its mingled execu-
tion model and runtime system. These complex obfuscation
methods usually either introduce high execution overhead
or involve much manual work. In this work, we focus on
the obfuscation methods which are easily automated and
introduce measurable execution overhead.

DNN-based Software Comprehension. DNN has enabled
major thrust in various areas such as machine translation.
Recent research has shown its ability in software compre-
hension and analysis, enabled by a various program em-

bedding techniques [68], [69], [70]. To date, RNN and LSTM
techniques have been used to address various code compre-
hension and instrumentation tasks, including program syn-
thesis [71], [72], [73], software reverse engineering [74], loop
invariant inference [75], malware detection [68], program
repairing [76], [77], program interpretation [78], and for edu-
cation purposes, such as automatic grading of programming
assignments [79], [80]. Despite the progress adoption of
learning-based technique in understanding software, how-
ever, hardening software with learning-based techniques is
rarely touched to date. In this work, we are the first to pro-
pose a unified learning framework to generate high-quality
and low-cost software obfuscation sequences to instrument
commonly-used software and make it more resilient toward
(adversarial) similarity analysis.

Binary Similarity. Comparing the similarity or difference
between two binary executable files is one of the most
popular scenarios in software security, e.g., detection of
malware variants, plagiarism detection, differential analysis.
As two widely used binary diffing tools, BinDiff [32] and
DarunGrim [81] first check the isomorphism of the control
flow graphs of binary files and then compare the syntactic
similarity of basic blocks. Binslayer [82] promotes BindDiff
by comparing program bipartite graph. discovRE [83] ac-
celerates the control flow graph isomorphism mapping by
extracting syntactical features. These binary analysis tools
only compare syntax-level similarity, that is, the appearance
of a program. Therefore, tools like BinDiff perfectly fit our
reinforcement learning training process. It gives feedback
showing how different the obfuscation result is.

Binary diffing analysis can also perform semantics-level
comparison. BinHunt [57] introduces symbolic execution
and SMT solver to checking the equivalence of basic blocks.
BinJuice [84] compares an abstract semantics extracted from
basic blocks. iBinHunt [58] extends BinHunt to an inter-
procedure analysis by application of multi-tag taint analysis.
Binsim [85] compares similarity of two dynamic execution
traces by checking system call sliced segment equivalence.
Recent research works also explore the feasibility to lever-
age Al techniques in comprehending program semantics
and performing binary code similarity analysis [59], [86],
[87], [88], [89], [90], [91], [92]. Nevertheless, semantic-level
binary similarity analysis does not fit our scenario since our
obfuscation result does not change program semantics.

9 CONCLUSION

Software obfuscation techniques have been widely used
to protect software from malicious analysis. To date, how
to effectively compose obfuscation methods still remains
an unsolved problem. In this research, we propose the
design of RLOBF for synthesizing practical and high-quality
obfuscation sequences to reduce program similarity with
only low cost. The proposed technique harnesses advanced
DRL technique to learn optimal obfuscation sequences. We
implemented the proposed technique as a practical tool to
protect executable files. Our evaluation reports promising
results. The employed DRL model can transform programs
to diverse representations with modest cost.

16

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(71

(8]

(9]

(10]
[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

J. Nagra and C. Collberg, Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. — Pearson
Education, 2009.

C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ser. POPL "98, 1998.

C. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation—tools for software protection,” IEEE
Transactions on Software Engineering, vol. 28, no. 8, pp. 735-746,
Aug. 2002.

B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai, “Protecting
obfuscation against algebraic attacks,” in Proceedings of the 33rd
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, ser. EUROCRYPT ’14, 2014, pp. 221-238.
K. A. Roundy and B. P. Miller, “Binary-code Obfuscations in
Prevalent Packer Tools,” ACM Computing Surveys, vol. 46, no. 1,
2013.

P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” IEEE Security and Privacy, vol. 9, no. 5, 2011.

M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-
On Guide to Dissecting Malicious Software. No Starch Press, 2012.
C. Wang, J. Davidson, J. Hill, and]. Knight, “Protection of
software-based survivability mechanisms,” in Proceedings of Inter-
national Conference of Dependable Systems and Networks (DSN'01),
2001.

H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in CCS 2007, 2007,
pp. 552-561.

“Snapshot of our codebase,” https://github.com/whj0401/
RLOBF, 2020.

“Evaluation data,” https:/ /www.dropbox.com/sh/
82203fmbxklcpzo/AACsWk11j -7oAuyk{j7f8L.Za?d1=0, 2020.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfus-
cating transformations,” Department of Computer Science, The
University of Auckland, New Zealand, Tech. Rep., 1997.

C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, ser. CCS '03,
2003, pp. 290-299.

A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Proceedings of the 23rd Annual Computer
Security Applications Conference, ser. ACSAC ‘07, 2007.

I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals,” in Proceedings of 16th USENIX Security Symposium,
ser. USENIX Security 07, 2007.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-
LLVM - software protection for the masses,” in Proceedings of
the IEEE/ACM 1st International Workshop on Software Protection,
SPRO’15, Firenze, Italy, May 19th, 2015, B. Wyseur, Ed. IEEE,
2015, pp. 3-9.

C. Szepesviri, “Algorithms for reinforcement learning,” Synthesis
lectures on artificial intelligence and machine learning, vol. 4, no. 1, pp.
1-103, 2010.

C.]. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279-292, May 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv preprint arXiv:1312.5602, 2013.

S. Wang, P. Wang, and D. Wu, “Composite software diversifica-
tion,” in 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 1EEE, 2017, pp. 284-294.

U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Proceedings of
the 2009 Network and Distributed System Security Symposium, ser.
NDSS '09. Internet Society, 2009.

https://github.com/whj0401/RLOBF
https://github.com/whj0401/RLOBF
https://www.dropbox.com/sh/82203fmbxk1cpzo/AACsWk11j_-7oAuykfj7f8LZa?dl=0
https://www.dropbox.com/sh/82203fmbxk1cpzo/AACsWk11j_-7oAuykfj7f8LZa?dl=0

[24]

[25]

[26]

[27]

[28]
[29]

(30]

(31]

(32]
(33]
(34]

[35]

[36]

(37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

J. Jang, M. Woo, and D. Brumley, “Towards automatic software
lineage inference,” in Proceedings of the 22Nd USENIX Conference
on Security, ser. USENIX Security’13. USENIX Association, 2013,
pp- 81-96.

D. Brumley, P. Poosankam, D. Song, and]J. Zheng, “Automatic
patch-based exploit generation is possible: Techniques and impli-
cations,” in IEEE S&P’08, 2008.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Auto-
mated software diversity,” in Proceedings of the 35th IEEE Sympo-
sium on Security and Privacy (S&P '14), 2014.

M. Piano, “Infrastructure for Reassembleable Disassembling and
Transformation,” https://github.com/piax93/uroboros, 2018.

D. W. Shuai Wang, Pei Wang, “A real disassembler,” 2015.

R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly
great again,” in 24th Annual Network & Distributed System Security
Symposium, 2017.

B. Erick, L. Zhigiang, and H. K. W., “Superset disassembly: Stati-
cally rewriting x86 binaries without heuristics,” in NDSS, 2018.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher,]. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary
analysis,” 2016.

Zynamics, “BinDiff,” http://www.zynamics.com/bindiff html,
2018.

S. Hex-Rays, “IDA Pro: a cross-platform multi-processor disassem-
bler and debugger,” 2014.

T. Dullien and R. Rolles, “Graph-based comparison of executable
objects,” SSTIC, vol. 5, pp. 1-3, 2005.

H. Chen, L. Yuan, X. Wu, B. Zang, B. Huang, and P-c. Yew,
“Control flow obfuscation with information flow tracking,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 42. New York, NY, USA: ACM,
2009, pp. 391-400.

P. Wang, S. Wang,]J. Ming, Y. Jiang, and D. Wu, “Translingual
obfuscation,” in 2016 IEEE European Symposium on Security and
Privacy (EuroS&P). 1EEE, 2016, pp. 128-144.

“Hex-Rays Decompiler: Manual,” https://www.hex-rays.com/
products/decompiler /manual/failures.shtml.

T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. 2, no. 4, pp. 308-320, Jul. 1976.

I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals,” in Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium. Berkeley, CA, USA: USENIX
Association, 2007, pp. 19:1-19:16.

xoreaxeaxeaX, “The single instruction C compiler,” https://github.
com/xoreaxeaxeax/movfuscator, 2018.

V. Pappas, M. Polychronakis, and A. D. Keromytis, “Practical
software diversification using in-place code randomization,” in
Moving Target Defense II. ~ Springer, 2013, pp. 175-202.

——, “Smashing the gadgets: Hindering return-oriented program-
ming using in-place code randomization,” in Security and Privacy
(S&P), 2012 IEEE Symposium on. 1EEE, 2012, pp. 601-615.

E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: generalizing return-oriented programming to
RISC,” in Proceedings of the 15th ACM conference on Computer and
Communications Security, 2008, pp. 27-38.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stir-
ring: Self-randomizing instruction addresses of legacy x86 binary
code,” in Proceedings of the 19th ACM Conference on Computer and
Communications Security (CCS '12), 2012.

C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning, “Address space
layout permutation (aslp): Towards fine-grained randomization of
commodity software,” in Computer Security Applications Conference,
2006. ACSAC "06. 22nd Annual, Dec 2006, pp. 339-348.

L. V. Davi, A. Dmitrienko, S. Niirnberger, and A.-R. Sadeghi,
“Gadge me if you can: Secure and efficient ad-hoc instruction-level
randomization for x86 and arm,” in Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications
Security, ser. ASIA CCS "13. New York, NY, USA: ACM, 2013, pp.
299-310.

J. Salwan, “ROPgadget
ROPgadget, 2012.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-In-Time Code Reuse: On the effectiveness of
fine-grained address space layout randomization,” in Proceedings

tool,” http://shell-storm.org/project/

17

(49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]

[68]

[69]

of the 2013 IEEE Symposium on Security and Privacy, ser. SP '13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 574-588.
G. Maisuradze, M. Backes, and C. Rossow, “What cannot be read,
cannot be leveraged? revisiting assumptions of JIT-ROP defenses,”
ser. USENIX Security "16, 2016, pp. 139-156.

M. Backes and S. Niirnberger, “Oxymoron: Making fine-grained
memory randomization practical by allowing code sharing,” in
Proceedings of the 23rd USENIX Security Symposium (USENIX Se-

curity 14). San Diego, CA: USENIX Association, Aug. 2014, pp.
433-447.
L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z.Snow, and F. Monrose,

“Isomeron: Code randomization resilient to (Just-In-Time) Return-
Oriented Programming,” in 22nd Annual Network & Distributed
System Security Symposium (NDSS), 2015.

M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Niirnberger, and
J. Pewny, “You can run but you can’t read: Preventing disclosure
exploits in executable code,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS"14. New York, NY, USA: ACM, 2014, pp. 1342-1353.

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R.
Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical code
randomization resilient to memory disclosure,” ser. IEEE S&P '15,
2015, pp. 763-780.

S.J. Crane, S. Volckaert, E. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s a trap: Ta-
ble randomization and protection against function-reuse attacks,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 243-255.

E.]. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 decom-
pilation using semantics-preserving structural analysis and itera-
tive control-flow structuring,” in Proceedings of the 22nd USENIX
Security Symposium (Washington DC, USA, 2013), USENIX Associa-
tion, 2013.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, Oct 2001.

D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatically
finding semantic differences in binary programs,” in Proceedings of
the 4th International Conference on Information and Communications
Security, ser. ICICS ‘08, 2008.

J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with
inter-procedural control flow,” in Proceedings of the 15th Annual
International Conference on Information Security and Cryptology, ser.
ICISC "12, 2012.

S. H. Ding, B. M. Fung, and P. Charland, “Asm2Vec: Boosting
static representation robustness for binary clone search against
code obfuscation and compiler optimization,” in IEEE Symposium
on Security and Privacy, 2019.

P. Szor, The Art of Computer Virus Research and Defense.
Wesley Professional, February 2005.

Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to
combat symbolic execution,” in European Symposium on Research
in Computer Security. Springer, 2011, pp. 210-226.

S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and
A. Pretschner, “Code obfuscation against symbolic execution at-
tacks,” in Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 2016, pp. 189-200.

B. Yadegari and S. Debray, “Symbolic execution of obfuscated
code,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 732-744.
R. Rolles, “Unpacking virtualization obfuscators,” in Proceedings of
the 3rd USENIX Conference on Offensive Technologies, ser. WOOT’09,
2009.

O. Tech., “Code Virtualizer: Total obfuscation against reverse
engineering,” http://oreans.com/codevirtualizer.php, 2019.
VMProtect, “VMProtect software protection,” http://vmpsoft.
com, 2019.

C. Collberg, “The Tigress C Diversifier/Obfuscator,” https://
tigress.witf, 2020.

T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code com-
prehension: A learnable representation of code semantics,” in
Advances in Neural Information Processing Systems, 2018, pp. 3585—
3597.

J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors:
understanding programs through embedded abstracted symbolic
traces,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 163-174.

Addison-

https://github.com/piax93/uroboros
http://www.zynamics.com/bindiff.html
https://www.hex-rays.com/products/decompiler/manual/failures.shtml
https://www.hex-rays.com/products/decompiler/manual/failures.shtml
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
http://shell-storm.org/project/ROPgadget
http://shell-storm.org/project/ROPgadget
http://oreans.com/codevirtualizer.php
http://vmpsoft.com
http://vmpsoft.com
https://tigress.wtf
https://tigress.wtf

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(871

[88]

[89]

[90]

[91]

[92]

E. Patterson, I. Baldini, A. Mojsilovic, and K. R. Varshney, “Teach-
ing machines to understand data science code by semantic enrich-
ment of dataflow graphs,” arXiv preprint arXiv:1807.05691, 2018.
M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tar-
low, “Deepcoder: Learning to write programs,” in Proceedings of
4th International Conference on Learning Representations, 2016.

C. Liang,]J. Berant, Q. Le, K. D. Forbus, and N. Lao, “Neural
symbolic machines: Learning semantic parsers on freebase with
weak supervision,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2017, pp. 23-33.

E. Parisotto, A. rahman Mohamed, R. Singh, L. Li, D. Zhou, and
P. Kohli, “Neuro-symbolic program synthesis,” 2016.

E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions
in binaries with neural networks,” in In Proceedings of the 24th
USENIX Security Symposium, 2015, pp. 611-626.

X. §i, H. Dai, M. Raghothaman, M. Naik, and L. Song, “Learning
loop invariants for program verification.” in Advances in Neural
Information Processing Systems (NeurIPS), 2018.

K. Wang, R. Singh, and Z. Su, “Dynamic neural program em-
beddings for program repair,” in 6th International Conference on
Learning Representations, 2018.

R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing
common c language errors by deep learning,” in Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

L. Zhang, G. Rosenblatt, E. Fetaya, R. Liao, W. E. Byrd, M. Might,
R. Urtasun, and R. Zemel, “Neural guided constraint logic pro-
gramming for program synthesis,” 2018.

S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program cor-
rector for introductory programming assignments,” in Proceedings
of the 40th International Conference on Software Engineering, ser. ICSE
"18, 2018, pp. 60-70.

R. Gupta, A. Kanade, and S. Shevade, “Deep reinforcement learn-
ing for syntactic error repair in student programs,” in Proceedings
of the thirty-third AAAI conference on Artificial Intelligence, ser. AAAI
2019, 2019.

“DarunGrim: A patch analysis and binary diffing tool,” http://
www.darungrim.org/.

M. Bourquin, A. King, and E. Robbins, “Binslayer: Accurate com-
parison of binary executables,” in Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop
(PPREW "13), 2013.

S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE:
Efficient cross-architecture identification of bugs in binary code,”
in Proceedings of the 23nd Annual Network and Distributed System
Security Symposium (NDSS16), 2016.

A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of
similar code fragments using semantic ‘juice’,” in PPREW’13.

J. Ming, D. Xu, Y. Jiang, and D. Wu, “BinSim: Trace-based Se-
mantic Binary Diffing via System Call Sliced Segment Equivalence
Checking,” in Proceedings of the 26th USENIX Conference on Security
Symposium (USENIX Security’17), 2017.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code
similarity detection,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS "17.
ACM, 2017, pp. 363-376.

F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural
machine translation inspired binary code similarity comparison
beyond function pairs,” in Proceedings of the 2019 Network and
Distributed Systems Security Symposium (NDSS), 2019.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2Vec:
Learning distributed representations of code,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 40:1-40:29, Jan. 2019.

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou,
“adiff: Cross-version binary code similarity detection with DNN,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2018, 2018, pp. 667-678.
J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: A semantic
learning based vulnerability seeker for cross-platform binary,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2018, 2018, pp. 896-899.
Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning
program-wide code representations for binary diffing,” 2020.

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of

18

the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS "16, 2016, pp. 480—-491.

Huaijin Wang received his Bachelor’s degree in
Software Engineering from the Nanjing Univer-
sity, Jiangsu, China, in 2018. He is currently a
Ph.D. student at the Department of Computer
Science and Engineering at the Hong Kong Uni-
versity of Science and Technology, Hong Kong
SAR. His research interests include software se-
curity, reverse engineering, and program analy-
sis.

Shuai Wang received the Ph.D. degree in infor-
matics from the Pennsylvania State University,
State College, PA, USA, in 2018. He is an As-
sistant Professor in the Department of Computer
Science and Engineering at the Hong Kong Uni-
versity of Science and Technology, Hong Kong
SAR. His research interests include cybersecu-
rity and software engineering. He is a member of
the IEEE.

Dongpeng Xu received his Ph.D. in Information
Sciences and Technology at the Pennsylvania
State University. He is an assistant professor in
the Department of Computer Science at the Uni-
versity of New Hampshire. His research interest
is software security, especially program analysis
on binary code, malware analysis and detection,
program protection, software testing, program
similarity analysis, and model checking.

Xiangyu Zhang is a PhD student at Univer-
sity of New Hampshire. He received his M.S.
degree in Electrical and Computer Engineering
from Auburn University and B.E. in Electronic
Information Engineering from Taiyuan University
of Technology. His research interests are Cyber-
security, wireless networking, mobile social com-
puting, crowd-sourcing, and machine learning.

Xiao Liu received her Ph.D. degree in informat-
ics from the Pennsylvania State University, State
College, PA, USA, in 2019. She is a Research
Scientist at the Facebook Inc., Menlo Park, CA,
USA. Her research interests lie in the areas of
computer security, software engineering, and Al.

http://www.darungrim.org/
http://www.darungrim.org/

	Introduction
	Background and Motivation
	Software Obfuscation
	Deep Reinforcement Learning (DRL)

	Research Motivation
	Design of RlObf
	Action Space
	Reward

	Implementation
	Evaluation
	Evaluation Setup
	Model Training
	Exploring Optimal Sequences
	Optimal Sequences Across Different Programs
	Comparing with Randomly Constructed Sequences

	Complexity of Obfuscated Programs
	Stealth of Obfuscated Programs
	Security Impact
	Resiliency to Code Reuse Attacks
	Resiliency to C Decompilation

	Interpretation of Model Decisions
	Adjusting Similarity Threshold

	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Huaijin Wang
	Shuai Wang
	Dongpeng Xu
	Xiangyu Zhang
	Xiao Liu

