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Abstract—Binary code function search has been used as the core basis of various security and software engineering applications,

including malware clustering, code clone detection, and vulnerability audits. Recognizing logically similar assembly functions, however,

remains a challenge. Most binary code search tools rely on program structure-level information, such as control flow and data flow

graphs, that is extracted using program analysis techniques or deep neural networks (DNNs). However, DNN-based techniques

capture lexical-, control structure-, or data flow-level information of binary code for representation learning, which is often too coarse-

grained and does not accurately denote program functionality. Additionally, it may exhibit low robustness to a variety of challenging

settings, such as compiler optimizations and obfuscations. This paper proposes a general solution for enhancing the top-k ranked

candidates in DNN-based binary code function search. The key idea is to design a low-cost and comprehensive equivalence check that

quickly exposes functionality deviations between the target function and its top-kmatched functions. Functions that fail this equivalence

check can be shaved from the top-k list, and functions that pass the check can be revisited to move ahead on the top-k ranked

candidates, in a deliberate way. We design a practical and efficient equivalence check, named BinUSE, using under-constrained

symbolic execution (USE). USE, a variant of symbolic execution, improves scalability by initiating symbolic execution directly from

function entry points and relaxing constraints on function parameters. It eliminates the overhead incurred by path explosion and costly

constraints. BinUSE is specifically designed to deliver an assembly function-level equivalence check, enhancing DNN-based binary

code search by reducing its false alarms with low cost. Our evaluation shows that BinUSE can enable a general and effective

enhancement of four state-of-the-art DNN-based binary code search tools when confronted with challenges posed by different

compilers, optimizations, obfuscations, and architectures.

Index Terms—Reverse engineering, symbolic execution, software similarity, deep learning

Ç

1 INTRODUCTION

BINARY code search determines the degree of similarity
between two pieces of assembly code, and it is critical in

many binary code security applications. For instance, mal-
ware analysis identifies malware samples that behave simi-
larly in order to uncovermalware families and avoid the need
to re-analyze knownmalware samples [1], [2]. Patch presence
testing extracts security patch signatures and conducts binary
code search to decide whether critical patches have been
properly deployed in an executable [3]. Binary code search is
also the basis of many binary code comprehension tasks, such
as code cloning and plagiarism detection [4], [5].

Given the prosperous development of machine learning
techniques and their widespread application in downstream

tasks like software embedding [6], [7], the majority of con-
temporary binary code search tools aim to train a machine
learningmodel to capture binary code similarity [8], [9], [10],
[11]. In particular, recent advances in deep neural networks
(DNN) and representation learning have enabled the prom-
ising approach of training DNN models to learn optimal
code representations capable of discriminating between sim-
ilar assembly functions [12], [13], [14], [15], [16], [17].

To learn code representations, DNN models are trained
with (lightweight) lexical-, control structure-, or data flow-
level features. Such representations, despite being easy to

extract, may not preserve program semantics to a great extent.

Additionally, lightweight features are typically not robust to

challenges such as compiler optimizations or obfuscations,

which make semantically similar assembly code appear to be

dramatically different. Hence, DNN models may exhibit low

discriminability and low robustness, resulting in a high num-

ber of false alarms in their retrieved top-k candidates.
This paper aims to enhance binary code function search

in a principled and efficient approach. Given a target func-
tion ft and a function repository RP , our key idea is to
employ a low-cost equivalence check to quickly identify
functions in RP that deviate semantically from ft, and
should thus be shaved from the retrieved top-k ranked can-
didates. As a result, functions that pass the check can be re-
considered for inclusion in the retrieved top-k candidates.
Our main results of boosting DNN-based binary function
search tools are shown in Table 1. In short, this work
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delivers a consistent and highly-encouraging enhancement
of four state-of-the-art DNN-based tools, despite the fact
that these tools are on the basis of different neural models
and learning techniques. According to our observation,
BinaryAI achieves the highest accuracy compared with
the rest models. Nevertheless, our work still identifies a con-
siderable space for improvement. In particular, the top-1
accuracy of BinaryAI is notably enhanced by 13.3%. Simi-
larly, the mean reciprocal rank (MRR) score of BinaryAI is
also largely improved for 17.2%. We present the detailed
evaluation and discussion in Section 8.

To design a low-cost and practical equivalence check, we
build and check the input-output relations of assembly
functions using constraint solving and under-constrained
symbolic execution (USE) techniques [19]. In comparison
with standard symbolic execution, USE is meant to perform
flexible and speedy symbolic reasoning directly from func-
tion entry points, skipping the costly path prefix from main

to target functions. We optimize the standard USE scheme as
a practical tool, namely BinUSE, particularly for equiva-
lence checking of assembly functions. BinUSE launches
USE traversal from the function entry point, and traverses
each path until reaching the first external function callsite,
denoting an informative and critical node on CFG. Then,
BinUSE uses symbolic formulas of external callsite inputs
to form symbolic constraints of each path, and to match two
functions, BinUSE explores matching symbolic constraints
collected from every path in each function.

BinUSE is unsound due to an over-estimation of legitimate
function input space, an unsound memory model of the sym-
bolic execution used, and several engineering challenges like
cross-architecture matching (see Section 4). However, in con-
trast to previous binary code equivalence checking that ana-
lyzes only basic blocks or a single execution trace [3], [4], [20],
[21], BinUSE is sufficiently scalable to cross-check all assem-
bly functions in a pair of coreutils executables within 56.6
CPU minutes (only 25.0s to check two assembly functions).
Similarly, BinUSE takes 4,137.6 CPUminutes (about 2.1 wall-
clock hours on our server with 32 CPU cores) to cross-check
functions in a pair of binutils executables. On average,
BinUSE takes about 10.9s to check two assembly functions;
note that binutils programs have significantly more func-
tions than that of coreutils programs. A variety of difficult
comparison settings are considered, including different
compilers, optimizations, architectures, and obfuscations.
BinUSE achieves average false positive rates of 25.0% and
false negative rates of 4.2%. Our evaluation shows that
BinUSE can successfully boost four cutting-edge DNN-based
binary code search tools under different settings, confirming
the approach’s efficacy and generalizability. We further

demonstrate optimizations that enable BinUSE to handle
binutils executables which are much larger than coreu-

tils executables and how BinUSE helps to improve the
accuracy of DNN-based vulnerability search. In summary,
wemake the following contributions:

� At the conceptual level, we advocate a new focus to
enhance DNN-based binary code function search
which currently exhibits low accuracy. Instead of
designing new DNNs (which are in principle diffi-
cult to precisely capture semantics), we design a
low-cost equivalence check to flag and shave assem-
bly functions that deviate from the target function
semantically.

� At the technical level, we present an equivalence check
by optimizing the standard USE scheme to further
reduce its cost. This equivalence check is particularly
designed for assembly functions, taking into account a
variety of technical challenges and optimization oppor-
tunities, e.g., collecting symbolic constraints over exter-
nal callsites reachable from function entry points to
reduce complexity.

� At the empirical level, our evaluation shows that the
designed equivalence check is general and effective to
enhance DNN-based binary function search tools with
low cost. The equivalence check shows excellent per-
formance in a variety of challenging settings, including
general equivalent functionmatching andCVE search.

We have released the source code of BinUSE and evalua-
tion data publicly available for reproducibility at [22]. We
will maintain BinUSE to benefit future research.

2 PRELIMINARIES

2.1 Formulation and Metrics

Most recent works perform semantics-aware assembly func-
tion search [6], [8], [12], [13], [14], [15], [18], [23]. That is, they
aim to determine the semantical similarity of two assembly
functions in binary code, although these two functions may
appear syntactically distinct, for example, as a result of com-
piler optimization. The function search task is similar to that
of information retrieval, in that given a target assembly
function ft and a repository of assembly functions RP ,
binary code search engines retrieve the top-k functions ft 2
RP ranked by their semantic similarity with ft.

Fig. 1 illustrates a frequently used and challenging
assessment setup in this sector [6], [8], [12], [13], [14], [15],

TABLE 1
Enhance Top-k and MRR Accuracy of DNN-Based Tools With

BinUSE

BinaryAI [15] asm2vec [14] ncc [13] PalmTree [18]

top-1 +13.2% +23.8% +34.5% +40.9%
top-3 +21.2% +30.7% +34.0% +41.0%
top-5 +22.2% +34.0% +30.1% +36.8%
MRR +17.2% +27.7% +32.1% +37.9%

See Definition of Top-k and MRR in Section 2.

Fig. 1. Assessment setup for binary code function search. The top-k
accuracy is computed by averaging results of taking each function in
Bin1 as the “target function”.
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[23], where we prepare two executable Bin1 and Bin2 com-
piled from the same program using different compilation
settings. Comparing each pair of functions yields a similar-
ity score, and the top-k accuracy is formulated in the follow-
ing way

1

N
�
Xn

i¼1
pkðfiÞ (1)

where N is the total number of functions in the program. To
understand this standard formulation of top-k accuracy: we
iteratively take each function fi in Bin1 as the target func-
tion to query the RP that is formed by all functions in Bin2.
To compute the top-k accuracy, let the correct match (i.e.,
ground truth) of fi be f

0
i . In Formula 1, pkðfiÞ yields one if f 0i

is within the retrieved top-k ranked candidates, whereas
pkðfiÞ ¼ 0 if f 0i is not. Note that the correct match f 0i (ground
truth) denotes functions sharing identical functionality with
the target function fi. For assessment in Fig. 1, the standard
and common setting is to deem a function f 0i sharing the
same function name with fi to be the ground truth. Another
commonly-used metric, known as mean reciprocal rank
(MRR) score, can be computed in the following way

MRR ¼ 1

jQj
XjQj

i¼1

1

ranki

where jQj denotes the total number of queries launched
toward RP , and ranki represents the rank of the correct
match for ith query returned by the function search tool. A
larger MRR score implies a more accurate function search.
For instance, given three queries toward RP where the cor-
rect matches for each query are placed at the 4-th, 2-th, and
6th ranked candidates, respectively. Then, the MRR is com-
puted as 1

3 ð14þ 1
2þ 1

6Þwhich is 0.31.
Clarification on FormingDataset of “Equivalent Code”.Careful

readers may wonder that conceptually, DNN-based binary
diffing tools are designed to find similar code. We clarify that
the function search setting over equivalent functions is indeed a
common setup adopted by most, if not all, (DNN-based)
works in this field [6], [8], [12], [13], [14], [15], [23]. This design
choice can be explained from three aspects: 1) in practice, it is
quite hard to create a large set of “similar binary code,”
whereas equivalent binary code can be well-prepared using
different compilation settings, 2) benchmarking equivalent
code can reflect the performance of these tools on the same
baseline, and therefore, this setting iswidely used in this field,
and 3) in addition to malware analysis, some other relevant
and important applications (e.g., patch analysis [3]; CVE
search) would require to precisely match equivalent code
fragments. For instance, in searching the infamousHeartbleed
vulnerability, OpenSSL version 1.0.1h, thoughmanifests simi-
lar functionality as to version 1.0.1f (which is vulnerable), has
been patched and is free fromHeartbleed.

2.2 Binary Code Equivalence Checking

In addition to popular DNN-based representation learning,
another line of research is to perform code equivalence
checking, using program input-output relations obtained
through symbolic execution (SE) [4], [20], [24], [25], [26],
[27]. Given symbolic formulas representing binary code

input-output relations, constraint solver is then used to
check the equivalence of symbolic formulas. Equivalence
checking results in strong resiliency to challenging settings
such as compiler optimization and obfuscation, since these
settings should not change program input-output relations.

Working Example. We now give a simple working exam-
ple to demonstrate how program equivalence is checked
using SE. Consider the code fragment below:

where a and m are the inputs of two code fragments,
respectively. SE represents inputs as free symbols and inter-
prets each statement within the symbolic domain. In our
case, the output formulas are shown below:

And the equivalence of the above code fragments can be
checked by forming the following constraint

a ¼ m ^ p 6¼ s

where the constraint solver searches the input space of a

and m to check whether there are two inputs a and m that
make the output formulas inequivalent. In case the con-
straint solver finds no satisfiable solutions (i.e., the solver
yields unsat), these two code snippets are rigorously
checked as equivalent.1

Limitation. The proposed technique gives rigorous proof
of program equivalence. Nevertheless, SE and constraint
solving suffer from low scalability, due to path explosion,
reasoning complex constraints, and domain-specific chal-
lenges for binary analysis [28]. To date, equivalence check-
based methods are mostly used for basic blocks or execution
traces comparison [3], [4], [20].

Binary Classification Task. We note that the equivalence
checking enabled by SE denotes a binary classification task.
That is, instead of computing a floating number represent-
ing the similarity score (as how DNN-based binary code
search tools do; Section 2.1), equivalence checking primarily
answers a “yes/no” question. Accordingly, the standard
classification errors can be defined as follows:

� false positive (FP), which implies that assembly func-
tions of different functionality are treated as
equivalent.

� false negative (FN), denoting that assembly functions
of identical functionality are treated as inequivalent.

While equivalence checking cannot be used to directly
compute a top-k accuracy, we use equivalence checking
enabled by USE to eliminate false alarms made by DNN
models, as will be introduced in Section 4.

2.3 Under-Constrained Symbolic Execution

To address the scalability issue of SE, USE [19] is proposed to
directly check arbitrary code components (e.g., a function)

1. Side effects are usually not consideredwhen checking equivalence.
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rather than the entire program, thus reducing the complexity
of SE in a principled and systematic way. Additionally,
because certain complex constraints on inputs are not mod-
eled, constraint solving is likely to become easier. Existing
research has illustrated that USE can allow to directly check
code fragments deeply hidden in the call chain [19].

To illustrate the high-level technical difference (in terms of
path coverage) between SE and USE, Fig. 2a presents a case to
analyze a message decoding program and identifies a bug in
decoding_msg. The main function receives the encoded
messagewith receive_msg, and performs decoding process
within a loop statement. The decoded message is then passed
to function decoding_msg, where a bug (marked as bug at
line 15 in Fig. 2a) is hidden within the if branch. SE can be
impeded in analyzing this simple case due to high computing
resource usage and verbose constraints. As shown in Fig. 2b,
SE starts from themain entry point to interpret program state-
mentswith symbolic variables.Whenanalyzing the loop state-
ment, symbolic variables in memory are increasingly created,
and each symbolic value processed by decoding may like-
wise continue to grow. Therefore, the memory usage could
become unrealistic, and the produced symbolic constraints
may be too complex to solve.

USE reduces the complexity in a principled manner. To
reach bug, USE directly analyzes decoding_msg. The
resulting path, as shown in Fig. 2c, imposes no complex con-
straint on the decoded message msg22 and likely induces a
much easier constraint to solve. More expensive whole pro-
gram analysis can be delayed until needed.

Limitation. By directly analyzing arbitrary code frag-
ments, USE relaxes constraints over inputs of code frag-
ments and could consequently induce much simpler
constraints. However, when using USE for equivalence
checking, it can induce false negatives by treating two equiva-
lent code fragments as unequal. Section 2.2 has introduced
equivalence checking by constructing constraints to check
the presence of inputs that lead to output deviations. Two
code fragments can pass the equivalence checking in case
no inputs induce output deviations. However, USE, by
relaxing constraints over inputs, could find satisfiable solu-
tions which are indeed invalid when taking the path prefix
from main to the target code fragments into account. Again,
successfully finding a satisfiable solution means that two

code fragments fail the equivalence checking. Overall, USE,
in principle, should deliver a complete, efficient, yet unsound
equivalence check, potentially inducing false negativeswhich
are usually undesirable. We will continue analyzing the
completeness of our customized USE implementation,
namely BinUSE, in Section 4.

2.4 Application Scope

The search granularity of our proposed technique, BinUSE,
is at the level of functions. As clarified in Section 2.1, This
design decision is aligned with most works in this field [6],
[8], [12], [13], [14], [15], [18], [23]. Nevertheless, the core
technique of BinUSE, i.e., USE, is generally applicable to
code components of different granularities [19].

As reported in Table 1, USE-based equivalence checking
is shown to deliver a general enhancement of cutting-edge
DNN-based binary code search. Furthermore, BinUSE

should be applicable to augment other code search tools, as
long as they do not use rigorous semantics information
(e.g., input-output relations) for matching. We focus on
DNN-based binary code search, as DNN-based binary code
matching has been shown to outperform most conventional
methods [14], [15], [16], [18]. In Section 8.5, we show the
generalizability of BinUSE by boosting binary code search
tools following conventional structure-level comparison.

3 RESEARCH MOTIVATION

Popular DNN-based binary code search learns code represen-
tations (i.e., “code embedding”) that can distinguish similar
binary code components with the rest [6], [8], [9], [10], [12],
[14], [17], [29]. DNN-based approaches learn code representa-
tions from lexical, control structure, or data flow facts, e.g.,
two instructions that access the samememory location [13]. A
well-trained DNN model will convert input binary sample
(or machine instructions) into numerical vectors, where two
similar programs should have a closer cosine distance. By pri-
marily learning from “fuzzy” and lightweight data and con-
trol features, DNN-based approaches exhibit high flexibility
and scalability, promoting analysis of large-scale binary sam-
ples. However, the learned lexical, control, or data features do
not necessarily and precisely denote functionality. In short,
we deem the learned embedding representations mainly suf-
fer from the following two drawbacks:

� Low Discriminability. This drawback denotes that
DNN models can treat logically different functions
as similar. Accordingly, low discriminability leads to
reporting many FP matching results.

� Low Robustness. Overall, robustness refers to the resis-
tance across a variety of imperfect conditions when
running the software or algorithm. Accordingly, low
robustness implies that DNN models can suffer from
matching functions sharing equal logic but appear to
be syntactically different. In general, low robustness
shall lead to reportingmany FNmatching results.

Motivating Example. We deem that the low discriminability
and robustness as a common observation of existing DNN-
basedmodels,which, to a certain extend, has also been pointed
out by recent DNN-based binary search tools such as asm2-
vec [14]. Nevertheless, existing DNN-based tools, including

Fig. 2. Comparing the high-level technical concepts (in terms of path
coverage) between SE and USE using “bug finding” as an example.
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recent “semantics-based” approaches like asm2vec, though
good at learning a scalable view of code representations, gen-
erally fail to understand semantics precisely. The rest of this
section presents a motivating example to illustrate the rela-
tively low discriminability and robustness of popular DNN-
based tools. The Linux coreutilsprogram suite has 105 pro-
grams, where each program has on average 103.7 functions.
Without loss of generality, we randomly select ten programs
and use one function from each program to launch a function
matching task. Thedetailed setuphas been given in Section 2.1,
andwemeasure top-50 accuracy.We benchmark four popular
DNN-based tools, BinaryAI [15], asm2vec [14], PalmTree
[18], and ncc [13]; we discuss details of these models in Sec-
tion 8.1. For this task, we use gcc -O0 to compile the target
function ft and gcc -O3 to compile theRP .

Fig. 3 presents the comparison results, where red dots
denote the similarity score of comparing assembly functions
compiled from the same source functions, while blue dots
denote similarity scores of comparing other functions. Ideally,
a high similarity score for red dots indicate DNN models’
robustness toward compiler optimization: assembly functions
compiled from the same source function, though exhibiting
distinct syntactical appearance, have identical semantics.
Accordingly, discriminability is reflected when blue dots are
well separated, meaning that assembly functions compiled
from different source functions show dramatic differences in
the view ofDNNmodels.

We report that out of 4� 10 test cases, 20 cases have the
red dots within the top-5 highest similarity, and 13 cases
have the red dots in the top-1 highest similarity (e.g., f9 and
f10 in the BinaryAI evaluation). Cases like f7 in Fig. 3c and
f5 in Fig. 3b are even at the 50th (lowest among top-50
cases), indicating a very low similarity score. In short, for
the evaluated cross optimization setting (gcc -O0 versus -
O3), we find that DNN models struggle to match the target
function to its true positive match in RP , indicating low
robustness toward compiler optimization. On the other
hand, it is also obvious that dots are not well separated
from each other in many cases: for instance, dots in f7 in
Fig. 3b and f6 in Fig. 3c are very close with each other, indi-
cating that DNN models struggle to distinguish assembly
functions with distinct semantics.

Fig. 4 presents a false prediction: two assembly functions
compiled from different source code are incorrectly deemed
“similar.” This is likely due to the similarity of the “contextual
flow graph” extracted by ncc (see Section 8.1 for its model
details), which, cannot reflect the functionality deviations.

Our study also shows that function rpl_fflush and its opti-
mized version (presented in Fig. 11 when discussing evalua-
tion results in Section 8.5), are assigned with a very low
similarity score. The optimized rpl_fflush has a largely
changed CFG, appearing structurally different but indeed
retaining the same logic.

Clarification.We clarify that the compilation setting used in
ourmotivation example denotes an easy task. Soon in our eval-
uation (Sections 8.5, 8.6, and 8.7), we show that DNN-based
tools, including BinaryAI and PalmTreewhich show rela-
tively better accuracy in this motivating example, generally
struggle in matching assembly functions from Linux coreu-

tils and binutils test suites, and real-world complex soft-
ware like OpenSSL and Wireshark, particularly under cross-
architecture, cross-compiler, and obfuscation settings. This
indicates that low robustness and discriminability are general
concerns for today’s DNN-based function search tools.

4 RESEARCH OVERVIEW

Fig. 3 has illustrated that modern DNN-based binary code
search learns code representation from coarse-grained fea-
tures and exhibits low discriminability and low robustness.
Hence, typically top-kmatched functions have close similar-
ity scores, while ground truth matches might not have high
enough similarity due to challenging settings such as com-
piler optimizations or obfuscations.

Our preliminary study manually inspected the top-k
matching results of these DNN models, and we suspect that
a simple equivalence check could effectively reduce FPs.
For instance, we can feed the target function ft and a func-
tion in the top-k match with the same input, and compare
their outputs to see if they differ. These input-output rela-
tions can act as an oracle, quickly exposing and shaving

Fig. 3. Matching ten randomly-selected functions from the coreutils dataset using four popular DNN-based function search tools. For each case,
we report the top-50 functions matched by DNN models (the top-k matching has been formalized in Section 2.1). The red dot in each figure denotes
the true positive match (which should manifest the highest similarity for each case, if these DNN-based tools are making accurate predictions), while
the blue dots (we have 49 blue dots for each case) are irrelevant functions in the top-50 matched functions.

Fig. 4. Two assembly functions in coreutils program shuf is incor-
rectly deemed as “highly similar” by DNN-based binary matching tools.
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logically different functions, whereas the true positive
matches gradually bubble out in a top-k retrieval.

WorkflowOverview. Fig. 5 depicts the overview of ourwork-
flow to enhance the top-k retrieval of DNN-based tools. In
short, this research aims to provide a low-cost equivalence
check that makes binary (true/false) decisions on whether
two assembly functions are identical. This way, we can
smoothly regulate the search results of DNN-based tools, by
reducing the FPs in the top-k retrieval. For instance, many
“blue dots” in our motivating example (Fig. 3) can be decided
as dissimilar with the target function by simply executing
both functions with an input and comparing the equivalence
of their outputs. With such a low-cost equivalence check, we
can easily shave these FPs off the top-k retrieval, thus optimiz-
ing cases like f7 in Fig. 3b and f9 in Fig. 3c.

Checking the equivalence of software is overall expensive.
Therefore, as a practical tradeoff, we accept an equivalence
check with relatively lower precision, in the sense that two
functions that pass the check may nonetheless be different.
This way, by augmenting DNN-based binary code search
with low-cost equivalence checking, a practical synergistic
effect can be achieved, resulting in speedy servicewith higher
accuracy. In the following section, we discuss the pros and
cons of each equivalence check proposal in accordance with
Fig. 6, and illustrate our implemented equivalence check
(referred to asBinUSE) in Fig. 6e.

Options for Function Equivalence Check. Fig. 6 analyzes
potential options to design assembly function equivalence
check. We now discuss each option in details.

Fig. 6a: Concrete Execution-based Equivalence Check. One
option is to use randomly-sampled values as inputs and

compare the concrete execution outputs [21], [29], [30], [31],
[32]. However, as illustrated in Fig. 6a, thismethodmay cover
only small input spaces, likely inducing high FPs by treating
different functions as equivalent. We also clarify that directly
executing assembly functions without setting up the proper
execution context can be very challenging [31].

Fig. 6b: SE-based Equivalence Check. On the other end of
the spectrum, SE precisely models the input constraints and
constructs equivalence checks within the legitimate input
spaces. Therefore, it should be accurate. Nevertheless, SE suf-
fers from low scalability, whose execution can hardly reach
functions deeply hidden in the call chain. In Section 8.3, we
show the low speed of performing whole-program SE using
recent versions of KLEE andMOKLEE [33], [34].

Fig. 6c: USE-based Equivalence Check. USE can launch
symbolic reasoning at arbitrary program points, and it pro-
motes standard SE by skipping expensive path prefixes. How-
ever, ignoring path prefix, as mentioned in Section 2.3,
indicates that USE cannot model constraints on inputs of the
target code fragments. Therefore, USE overly explores the full
input space. Section 2.3 has clarified that USE enables com-
plete albeit unsound equivalence checking, as it may find
counterexamples outside the legitimate input space, thus vio-
lating the equivalence checking constraint given in Section 2.2.

Fig. 6d: USE-based Function Equivalence Check. Despite
the general difficulty of addressing unsoundness, our obser-
vation on real-world software induces a key assumption in
this research:

In general, functions in real-world programs adhere to
the defensive programming principle [35], [36], [37], which
states that no particular function should make assump-
tions about its inputs (e.g., a pointer passed by the caller
could be invalid). That is, the inputs to functions may be
any value in the input space.

As illustrated in Fig. 6d, this assumption offers a unique
opportunity to provide a “soundy” equivalence check, par-
ticularly for functions, because when analyzing functions in
real-world software, the legitimate input space should be
aligned with the complete input space that USE can explore.
The likelihood of performing unsound equivalence check-
ing in practice should be slim. On the other hand, we clarify

Fig. 5. Overview: regulating top-k (k ¼ 5) retrieval of DNN-based tools
with low-cost equivalence checking enabled by BinUSE. GT denotes
the ground truth for this query.

Fig. 6. Different options for equivalence checking. Our approach, as an optimized USE implementation particularly over assembly functions, is
referred to as BinUSE in this paper. Comparing to standard USE, BinUSE further trades completeness for speed.
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that in case users aim to leverage USE to compare arbitrary
code fragments, e.g., a recently patched code block with
those un-patched versions [38], the aforementioned key
assumption is not applied. Therefore, users might need to
resort to using USE (while suffering from unsoundness) or
standard SE (with low scalability).

Indeed, our evaluation (Table 7) shows that for our custom-
ized USE (dubbed BinUSE; see below), the average FN rates
are very low (4.2%), evenwhen very challenging cross-optimi-
zation, cross-compiler, cross-architecture, and obfuscation set-
tings are assessed. More importantly, we manually analyzed
BinUSE’s errors; we report that they are not due to the viola-
tion of the defensive programming assumption mentioned
above. We list results that can induce FPs and FNs to BinUSE

in Section 9. In summary, this principle is seen as obeyed by
programmers of popular program suites like coreutils,
binutils, and complex real-world software like OpenSSL
and Wireshark. It’s also interesting to launch an empirical
study, as part of this paper’s future work, to determine
whether common software adheres to defensive programming
concepts. Given that said, our preliminary study shows that
the standard USE design continues to suffer from slow analy-
sis speed (see paragraph Baseline in Section 5). Therefore, we
demand further optimization on speed, as discussed below.

Fig. 6e: BinUSE-based Function Equivalence Check. We
depict the USE approach launched in this work, namely
BinUSE, in Fig. 6e,wherewe further optimizethe standardUSE
approach by trading completeness for speed, particularly for
equivalence checking of assembly functions. BinUSE launches
USE traversal from the entry point of each assembly function
to explore each path. When traversing a path, it stops when-
ever reaching the first external function callsite. In this
research, we assume that external function callsites (e.g., a
function call to libc functions) representing informative and
critical nodes on CFG. BinUSE computes the symbolic formu-
las of external callsite’s inputs to form the symbolic constraints
of each path. Tomatch two functions, BinUSE exploresmatch-
ing symbolic constraints collected from every path in each
function. BinUSE is not sound. However, the average FN rate
is very low according to our empirical results. Moreover,
BinUSE enables low-cost checks under various challenging
settings (e.g., cross-architecture). BinUSE can finish checking
two coreutils executables within 56.6 CPU minutes (on
average 25s per pair of functions), including all symbolic exe-
cution and constraint solving tasks. This indicates its practical
usage in production.

5 DESIGN OF BINUSE

This section introduces the design of BinUSE, a USE-based
equivalence checking tool. Procedures to regulate top-k

retrieval of a DNN model with BinUSE will be given in Sec-
tion 6. Fig. 7 depicts the high-level workflow of BinUSE.
Overall, given an input executable file, BinUSE first performs
reverse engineering to recover the assembly function informa-
tion (see Section 2.4 for reverse engineering assumptions).
Then, it starts from the entry point of each assembly function
to launch USE path by path (Fig. 7a), where each path tra-
versal stops when reaching the first external callsite. As a
result, a subgraphwill be generated,where each leaf node cor-
responds to one external callsite. To compare two assembly
functions, we compare their derived subgraphs (Fig. 7b), by
launching constraint solving to cross-check the semantics
equivalence of external callsite inputs and path constraints
(see details in Sections 5.3 and 5.4). Before elaborating on the
design of BinUSE, we first clarify our assumption regarding
reverse engineering below and baseline in Section 5.1.

Assumption on Reverse Engineering. Our analysis is at the
function-level, and it does not assume the presence of pro-
gram symbols or debugging information. Stripped binary
could be processed with no additional difficulty, as long as
functions have been identified for use. Our analysis is also
platform-neutral; we evaluated three cross-architecture set-
tings for x86 64-bit, x86 32-bit, and ARM architectures. We
also evaluate different compilers (gcc and clang), optimi-
zation levels, and commonly-used obfuscation methods.
BinUSE manifests generally encouraging results regarding
all of these settings. Nevertheless, we clarify that assembly
function search task by nature can be impeded by function
inlining; if a query function is inlined into its callers, the func-
tion-level search can be undermined. We clarify that this is a
common limitation in this line of works, not only BinUSE.

5.1 Baseline

To conduct function equivalence checking, the baseline
approach is to perform standard intra-procedural analysis
starting from the entry point of a function and iterating
every execution path. Free symbols are created whenever
loading from unknown data, including function parame-
ters, global data, and other memory regions. We then collect
output symbolic formulas of CPU registers and memory at
the exit point of a path to construct an input-output relation.
This denotes a standard setting in this line of work [20], and
conceptually corresponds to the standard USE scheme illus-
trated in Fig. 6d.

We tentatively explored this scheme; while this design
enables a full-fledged modeling of input-output relations,
our preliminary study reveals its low scalability. The
induced intra-procedural CFG is often very complex. Addi-
tionally, we implemented the standard CoP algorithm [4] to
reduce complexity by extracting the longest common subse-
quence (LCS) of equivalent basic blocks on a path. However,
certain implementation details (e.g., block splitting and
merging) remain unknown. While the USE method primar-
ily reduces the complexity of whole program SE, our tenta-
tive study in analyzing real-world executables illustrates a
demanding need for further calibration and optimization.

5.2 Generating Subgraphs From CFG

Considering the difficulty of fully exploring the CFG of a
function, we first extract a subgraph. The extracted subgraph

Fig. 7. High-level workflow of BinUSE.

232 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 19,2023 at 13:11:59 UTC from IEEE Xplore.  Restrictions apply. 



should retain representative features of the corresponding
CFG, and reasonably reduce the analysis complexity. In this
research, we deem external function callsites as representative
and critical nodes on CFG. From a holistic perspective, most
compiler optimizations and obfuscations are designed to per-
form intra-procedural transformations [39]; external function
calls, mainly formed by calling dynamically linked libraries,
should not be changed. Soon in Section 5.5, we will introduce
an optimization to take return instructions (ret) as another
representative nodes into this subgraph.

BinUSE is designed to traverse every execution path from
the entry point of each assembly function.When encountering
a loop, as a common workaround, we unroll the loop (the
unroll factor is currently set as 5). When analyzing an execu-
tion path, BinUSE recursively inlines every callsite on the
path that has its implementation in the binary code. BinUSE
stops whenever encountering the first external callsite. Consis-
tentwith standard SE, we create free symbols to represent val-
ues stored in registers ormemory cellswhen they are accessed
for the first time and the stored symbolic value is unknown.
Whenwemeet an external callsite, we collect symbolic formu-
las for each function call’s input (see below for information on
recovering function prototype) to form the “outputs” of this
path. We also record path constraints as the pre-requisite of
reaching this external callsite.

5.3 Comparing Two Subgraphs

Fig. 8 illustrates the processes required to compare two sub-
graphs Gt and Gs derived from the assembly function ft and
fs, respectively. As shown in Fig. 8a, the CFG traversal and
stop criteria proposed in Section 5.2 forms a subgraph with a
reasonable degree of complexity from each CFG, with each
leaf denoting an external function callsite. As a result, compar-
ing two CFGs becomes a matter of comparing these two sub-
graphs: we compare each callsite iteratively until we find that
a permutation that makes external callsites in Gt pairwise
equivalent with external callsites in Gs. Note that we allow
only a subset of callsites inGt to match another subset of call-
sites in Gs. The reason is that compiler optimizations can
sometimes eliminate C library function calls, therefore allow-
ing a subset of library calls to match another subset of library
calls would not neglect tomatchGt with highly optimizedGs.
In contrast, two functions are deemed inequivalent if no per-
mutations are found.

While comparing callsites pairwise inGt andGs can intro-
duce a lot of permutations, we clarify that we will proceed
with heavyweight equivalence checking (see Fig. 8d) only
when two callsites refer to the same external function. Exter-
nal function names can be obtained from even stripped ELF

binary code. For instance, we will compare two callsites inGt

andGs in case they both refer to fopen.
C Library Calls Replacement. When certain input parame-

ters of a C library call are constant, a compiler might replace
this C library call with others [40]. In addition, compilers
might occasionally replace a common C library call with a
safer version. For instance, by replacing printf with
__printf_chk, stack overflow is detected prior to com-
puting the results [41].

Library callsites matching deems a critical step in equiva-
lence check, and to this end,wemanually collected the follow-
ing list where each entry is also a listL. BinUSE is constructed
to treat library calls within eachL as identical. For instance, in
addition to comparing two printf callsites (Section 5.3), we
consider a printf callsite and __printf_chk to be identi-
cal and proceed to construct constraints for the equivalence
check. To our best knowledge, this list encompasses all possi-
ble C library replacements discovered in our test cases, which
include Linux coreutils and binutils test suites, as well
as a CVE database including vulnerable functions from com-
plex software like OpenSSL,Wireshark, bash, and ffmpeg. As
such, we assume that the following list is comprehensive and
can benefit future research in this field.

Calculating Quantitative Matching Scores. Assuming there
are n paths in Gt (each path terminates in an external call-
site), and we identify p paths whose external callsites have
semantically equivalent callsites in Gs (see Section 5.4), a
score s expressing the confidence of treating assembly func-
tion ft and fs as equivalent is calculated as p=n. This confi-
dence score will be saved and used when calibrating results
of DNN models. Given that said, we clarify that when ana-
lyzing coreutils executables, 87.9% cases have a confi-
dence score of 1.0, indicating that for the majority of the
time, all paths on Gf are matched to Gs.

Fig. 8. Comparing two subgraphs and callsites.
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5.4 Comparison of Two Callsites

To compare two callsites in machine code, we first recover
function prototypes to determine the number of parameters to
extract. To do so, we leverage a commercial software decom-
piler, IDA-Pro [42], to recover the function prototype informa-
tion. While prior research has demonstrated IDA-Pro’s
inadequate support for function information recovery [43], we
find that the standard C library function information is well-
maintained in the FLIRT database [44] of IDA-Pro. Hence,
using IDA-Pro (version 7.3) ensures the credibility of analyz-
ing external callsites to a great extent. Nonetheless, we agree
that if the executables contain some user-defined (or some
third-party defined) library calls, FLIRT is unable to handle
them. Recovering such information requires inference about
the number of function parameters; recent advances in recov-
ering function prototype information can be referred [43], [45],
[46]. Given a callsite of N parameters, we extract N symbolic
formulas following the calling convention on corresponding
architectures. For instance, we load N memory cells from the
top of the stack for x86 32-bit architectures.

Call Parameter Permutation. As shown in Fig. 8b, to check
two callsites, we search for a permutation of function parame-
ter pairwise match. We note that instead of simply comparing
the ith parameter Argit and Argis between two callsites, we
allow a more conservative design by searching for the exis-
tence of a permutation. For instance, two callsites of fopen in
Fig. 8b will be deemed equivalent, in case filenamet matches
modes and filenames matches modet. Note that this design
makes our equivalence checkmore conservative, being robust
to compiler optimizations, potential obfuscations, but could
introduce FPs. As aforementioned, compiler optimizations
might replace certain library function calls into others, where
function parameters might be relocated or removed. Consid-
ering the following twoC library functions:

where compiler optimizations may replace a callsite of
dgettextwith gettextwhen domainname is constant. To
match a callsite of dgettext with a callsite of gettext in
highly optimized code, we need to match the second parame-
ter indgettextwith the first parameter ingettext.

The above case also reveals the observation that two
“identical” function callsites could have different number of
arguments. To this end, our current implementation would
deem two callsites as equivalent, by setting a threshold g

such that g arguments in the first callsite should be pair-
wisely matched with the other callsite. This way, we practi-
cally alleviate obstacles raised by inconsistent number of
function parameters. Overall, we consistently and conserva-
tively design BinUSE to be robust against various real-
world obstacles, principally eliminating potential FNs. Note

that given the number of parameters in two callsites, we
always use the smaller number as the dividend to compute
a ratio r � 1 and compare with g. g is empirically decided
as 0.5 in our current implementation.

The call parameter permutation offers a more conservative
design and is robust to various compiler optimizations that
may change callsites (an example is given above). Neverthe-
less, if the two function callsites involvemany parameters, the
number of permutations to check will grow exponentially.
Our empirical observation demonstrates that this permuta-
tion method does not impose excessive overhead, as nearly
all commonly used software has a limited number of function
parameters. To further justify this design decision, we give a
distribution of the number of parameters for all external call-
sites encountered in our test cases in Table 2. Note that distri-
bution data in Table 2 is obtained from analyzing all of our
evaluated programs, including Linux program suitescoreu-
tils and binutils, and a CVE database containing vulner-
able functions in real-world complex software like OpenSSL,
ffmpeg, Wireshark (see details in Section 8). It is observed
from these empirical results that most external callsites has
less or equal to 2 parameters, and nearly all external callsites
have less or equal to 5 parameters. As a result, we deem that
our design decision of permutating parameters does not add
significant cost, but can help make BinUSE’s overall design
more conservative and robust.

Equivalence Checking of Two Parameters. We then construct
constraints for equivalence check of a pair of parameters
(see Fig. 8d). Let PCt and PCs be the path constraints col-
lected from the entry point of the analyzed assembly func-
tions reaching to these two callsites. Let Argit and Argjs be
the ith and jth parameters of these two callsites. Formally,
we check

X ¼ pðY Þ ^ ðPCtðXÞ ^ PCsðY ÞÞ ) ðArgitðXÞ 6¼ ArgjsðY ÞÞ

where X ¼ ½x0; . . . ; xm� denotes the list of symbols used by
either Argit or PCt. Similarly, Y ¼ ½y0; . . . ; yn� denotes the list
of symbols used by either Argjs or PCs. As shown in Fig. 8c,
We check to see if there existed a permutation pðY Þ that
would pairwisely match X under the conjunction of path
constraints PCtðXÞ ^ PCsðY Þ to make the above constraint
unsat. In case such a permutation can be found, Argit and
Argjs are checked as equivalent. We note that permutation
can make BinUSE more conservative (less FNs) and robust
against changes introduced by cross-architecture, cross-
compiler, and obfuscations. Nevertheless, this design deci-
sion may potentially introduce extra FPs. We view this as a
design tradeoff to calibrate FP/FN rates.

In addition to permutation, at this step we also normalize
a constant in symbolic formulas if it denotes a memory
address. We conduct a straightforward approach of deter-
mining the constant that represents a memory address.
First, when performing USE path by path, we flag a constant
as a memory address whenever we observe that it is used to
construct the base address of code pointers. Second, we
make an assumption shared by many advanced static disas-
semblers [47], [48], [49] such that a constant will be treated
as a memory address if it points to the data or text sections
of an ELF format executable.

TABLE 2
Distribution of Number of Parameters in Each External Callsite

� 2 3–4 5 6 7 � 8

73:0% 23:0% 3:9% < 0:1% (1 case) < 0:1% (1 case) 0
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Symbols (X and Y ) are collected by traversing the con-
structed symbolic formulas and path constraints. Each time
when checking the above constraint, we set the timeout for
the employed solver, Z3 [50], to N seconds. In case the SMT
solver yields an unsat, or it cannot find a sat solution
within N seconds, two function call arguments are deemed
equivalent. N is set as 15 seconds for our current implemen-
tation, and our observation shows that most tasks can be fin-
ished within this threshold. Setting a timeout may cause
inequivalent arguments to be treated as equivalent (i.e.,
FPs), since no counterexamples were found within N sec-
onds. Setting a timeout, however, does not introduce FN,
but can accelerate the analysis of large-scale binary samples.

5.5 Optimization: Collecting and Comparing Path
Constraints on Paths Without External Callsites

While the traversal strategy introduced in this section can
subsume most real-world cases (see discussions in Sec-
tion 8.2), some corner cases may exist to impede our analysis.
In particular, there may be no external callsites on an execu-
tion path. In such cases, instead of simply skipping this path
analysis, we collect the path constraints PC from the function
entry point until reaching the return instruction (ret) at the
end of the execution path. However, if we cannot construct
any path condition when traversing this path, we skip com-
paring this path. From a holistic view, each return instruction
ret will be treated as a special “external callsite” with no
parameters, and to decide if two paths with no external call-
sites can be matched, we use the following constraint to
check their associated path constraints PCt and PCs

X ¼ pðY Þ ) ðPCtðXÞ 6¼ PCsðY ÞÞ

where X ¼ ½x0; . . . ; xm� denotes the list of symbols used by
PCt and Y ¼ ½y0; . . . ; yn� denotes the list of symbols used by
PCs. That is, we check if there was a permutation pðY Þ to
pairwisely match X to make the above constraint unsat. If
not, two path contraints are checked as equivalent.

This optimization will extend the subgraph generated
during our symbolic traversal (Section 5.2) with extra nodes,
denoting the path constraints collected from execution
paths with no external callsites. Then, to compare two
formed subgraphs Gt and Gs derived from assembly func-
tion ft and fs (Section 5.3), we still cross compare nodes on
Gt and Gs denoting external callsites, and also cross com-
pare nodes on Gt and Gs denoting paths with no external
callsites using the above constraint.

According to our empirical results, this optimization can
facilitate comparing a number of paths with no external call-
sites, and further improve the accuracy of DNN-based tools.
We compare the enhanced top-1 accuracy of four evaluated
DNN models (model details are clarified in Section 8.1) in
Table 3. We use the Linux coreutils test suite for the
comparison, and the accuracy is computed by averaging all
12 comparison settings evaluated in this research (see
Table 7 for details of these settings). In short, after using the
optimization proposed in this section, BinUSE can further
enhance the accuracy of DNN models for about 2.45% on
average. We also discuss some other corner cases we have
encountered and our workaround in Section 9.1.

Other Optimization Opportunities. It is worth noting that we
also tentatively explored other optimization methods. For
instance, currently, the customized USE scheme used by
BinUSEdoes not consider the impact of the return values from
external callsites. Suppose the input/output constraints of an
external callsite (e.g., a callsite to the standard libc function
strcpy) has been modeled by BinUSE, it is feasible to con-
tinue the symbolic execution with the modeled return values.
From a holistic view, thismay likely take additional constraints
on the return values of external functions into consideration
during equivalence checking, which may help to improve the
true positive rates. Despite the promising potential of this opti-
mization, we clarify that it is generally difficult to model
input/output relations of external callsites, which may require
considerable manual efforts to hardcode such information for
BinUSE. We also notice that popular symbolic execution
engines like KLEE have encoded such input/output con-
straints for some standard libc functions,whichmight be lever-
aged to enhance BinUSE. On the other hand, it is generally
hard, if at all possible, to encode such information for some
user-defined (or some third-party defined) library calls.

6 BOOSTING DNN-BASED TOOLS

We now discuss strategies to refine ranked candidates of
DNN-based binary code function search. Recall the problem
formulation in Section 2.1 such that given a target function
ft, we compare ft with repository functions fs 2 RP and
decide the logic similarity between each function pair. Sup-
pose DNN models compare ft with each fs 2 RP , and each
comparison yields a similar score Preddnnðft; fsÞ 2 ½0; 1�. Let
fs 2 Pdnn denote the top-k ranked candidates (jPdnnj ¼ k)
and Ndnn ¼ RP n Pdnn. Similarly, after checking ft with each
fs 2 RP , BinUSE returns a usually small set of functions
Puse passing the equivalence check, and each pair associated
with a confidence score Preduseðft; fsÞ 2 ð0; 1�.2 Nuse denotes
the negative predictions such thatNuse ¼ RP n Puse.

Algorithm 1 presents the algorithm to boost DNN-based
binary code function search with BinUSE, in accordance
with the aforementioned notations. To ease the presenta-
tion, let Pdnn be a map data structure, whose keys are the
top-k functions and values are the corresponding similarity
scores. Similarly, Puse maps each function in the repository
to its equivalence checking results (the confidence scores)
with ft. For a function fs 2 RP , Algorithm 1 handles three
situations to boost top-k retrieval as follows:

fs 2 Pdnn ^ fs 2 Puseðlines4� 6Þ. Overall, BinUSE accepts
Preddnnðft; fsÞ in case fs 2 Puse ^ fs 2 Pdnn. That is, BinUSE

TABLE 3
Demostrating Enhancement Over DNN Models Due to the Opti-

mization Proposed in Section 5.5

BinaryAI asm2vec ncc PalmTree

w/o opt. 59.7% 45.1% 67.3% 62.6%
with opt. 62.1% 47.5% 67.5% 64.9%

2. Section 5.3 clarifies how to compute the confidence score; for our
evaluation, 87.9% positive cases are associated with a confidence score
of 1.0.
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and DNNmodels reach to an agreement, and fs will be kept
in top-k Pdnn. In Algorithm 1, fs is kept in a temporary map
P together with its confidence score s0 and similarity score s
in Pdnn and Puse, respectively (line 6).

Algorithm 1. Enhancing DNN-Based Function Search
and Retrieve Top-k Ranked Candidates

1: function Enhancement(Pdnn: dict, Puse: dict)
2: P  dict() " P stores the final results.
3: for ðf; sÞ 2 items(Pdnn) do
4: if Puse½f � > 0 then " f 2 Pdnn ^ f 2 Puse

5: s0  Puse½f �
6: P ½f �  ðs0; sÞ
7: else " f 2 Pdnn ^ f 2 Nuse

8: P ½f �  ð0:0; sÞ
9: for (f; sÞ 2 items(Puse) do
10: if f =2 keys(D) && s � a then " f 2 Ndnn ^ f 2 Puse

11: P ½f �  ðs; 0:0Þ
12: P  sort(P ) " Sort P in descending order
13: return retrieve-top-kðP ) " Retrieve top-k from the sorted

P

fs 2 Pdnn ^ fs 2 Nuseðlines7�8Þ. For such cases, we shave
fs from the top-k Pdnn. The reason is that BinUSEmakes low
FNs, and in case fs 2 Nuse, we have a high confidence of tak-
ing fs out of Pdnn. Note that fs could still be retrieved in top-
k, unless we find cases satisfying the condition on lines 9-11
andmove them fromNdnn into Pdnn. Therefore, we still put fs
in P , though the “confidence score” for BinUSE to match fs
and the target function is 0.0, as illustrated in line 8.

fs 2 Ndnn ^ fs 2 Puseðlines9� 11Þ. Given that Puse may
induce FPs due to its over-approximation, we resort to rely
on a pre-trained threshold, a, to selectively accepts Puse. fs
will be added into P , only if its associated confidence score
Preduseðft; fsÞ � a (line 10). We empirically decide a as 0.41
in the current implementation. See relevant discussions in
Section 7.

P maps functions fi to their associated confidence score
s0i (decide by BinUSE) and similarity score si (decide by the
DNN models). On line 12, we reorder functions in P in
descending order. That is, function fi will be put ahead of fj
in P if the confidence score s0i > s0j, and if s0i ¼ s0j, we further
compare the similarity score to see if si > sj. We finally
return the top-k elements in P on line 13.

7 IMPLEMENTATION

We implement BinUSE with approximately 5,500 lines of
Python code on the basis of a binary analysis framework
angr [51]. By linking with the popular angr ecosystem
which lifts assembly code into the platform-neutral VEX
intermediate language, BinUSE can process executables
from different architectures. More importantly, a rich set of
analysis facilities (e.g., symbolic execution) are already avail-
able in angr, therefore saving the effort of building it from
scratch. When analyzing each assembly function, we set a
timeout threshold as 10 minutes. We only have negligible
timeout cases (see Section 8.3).

Deciding the Threshold a. As discussed in Section 6, we
define a as a threshold to regulate the calibration of DNN
predictions. In this section, we illustrate an empirical

procedure to decide the a. In general, setting a large a indi-
cates overconfidence on BinUSE’s analysis results (leaving
more FNs in the calibrated final predictions). A small a, how-
ever, may overlook opportunities to match assembly func-
tions and induce more FPs. Hence, we empirically decide a

to maximize the portion of true positives among all positive
predicationsmade by BinUSE.

To this end, we generating two sets of binary code by
compiling coreutils using gcc with -O0 and -O3 opti-
mizations. Let each coreutils program have on average
n functions, and the entire coreutils test suite has m pro-
grams, we use BinUSE to cross compare in total n�m func-
tion pairs, following the standard setting introduced in
Fig. 1. For instance, get_global_opt in ls compiled with
gcc -O0 should be matched to the same function in ls

compiled with gcc -O3. Given a, we keep positive predica-
tions made by BinUSE whose confidence score s � a. We
then compute precision jTP jjT j , where jT j denotes total number
of positive cases, and jTP j denotes the number of true posi-
tives in BinUSE’s matching results. We iterate a every 0.02
step from 0.01 until 1.0 and plot Fig. 9. According to Fig. 9,
a ¼ 0:41 induces the highest precision.

Generalization of a. Our employed test suite, coreutils,
contains over 100 programs of diverse functionality, which
are all commonly used on Linux. More importantly, while
a ¼ 0:41 is decided over coreutils test cases compiled
using gcc with -O0 and -O3 settings, this configuration is
shown as effective over other challenging settings intro-
duced by different compilers, optimizations, architectures,
and obfuscations. Table 4 evaluates how different a changes
the enhancement under different comparison settings. It is
seen that a ¼ 0:41 constantly shows encouraging results
across all compilation settings. This evaluation illustrates the
generalization of our selected a in most usage scenarios.

Nevertheless, we admit that the software dataset suffers
from non-negligible domain shift which makes it possible
that this empirical selection of hyper-parameter is not gen-
eralizable across different datasets. Users can follow the same
procedure to decide their optimal choice of a over other
datasets. In fact, when benchmarking binutils test cases,
we find that the optimal a is 0.68, rather than 0.41, though
the latter configuration also achieves close precision.

Fig. 9. Precision changes w.r.t. different a using the gcc -O0 versus gcc
-O3 comparison setting. The optimal result is achieved when a ¼ 0:41.
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8 EVALUATION

8.1 Evaluation Setup

Dataset and Compilation Setting. We evaluate BinUSE using
Linux coreutils dataset (ver. 8.28). coreutils dataset
contains 106 programs. We compile programs with seven dif-
ferent settings (see Table 5). We use gcc 7.5.0 and clang 4.0.1
to compile programs.We compile programswith no optimiza-
tion (-O0) and the highest optimization (-O3). To facilitate a
cross-architecture comparison, we compile the binary code on
three different architectures, 32-bit x86, 64-bit x86 and ARM.
We report that each coreutils executable compiled with
-O3 option has on average 103.7 functions. In other words,
given a pair of coreutils executables, BinUSE needs to
cross compare 103:7� 103:7 assembly functions. Furthermore,
we benchmark BinUSE using the Linux binutils dataset
(ver. 2.36) in Section 8.7. binutils dataset contains 112 pro-
grams. Each binutils executable has on average 1,765.0
functions. Hence, given a pair of binutils executables,
BinUSE needs to launch a much larger number of cross com-
parisons; see Section 8.7 for our optimization to reduce the
number of comparisons. We use the same seven settings to
compile binutils programs on x86 32-bit, x86 64-bit, and
ARM architectures. We also assess a popular downstream
application, searching for vulnerable assembly functions. We
use the CVE dataset released by [26], which is also adopted by
asm2vec. These assembly functions are from complex real-
world software, including OpenSSL, Wireshark, ffmpeg, and
ntpd; see details in Section 8.6.

For all test programs, we generate obfuscated binary
code with Obfuscator-LLVM [52], which contains three

obfuscation schemes. Instruction substitution (-sub) imple-
ments several mapping rules to convert certain instructions
into semantics-equivalent instructions. Bogus control flow
(-bcf) inserts opaque predicates into randomly selected
code blocks. It changes the control flow structures by add-
ing extra nodes and edges [39]. Control-flow flattening
(-fla) changes the CFG of a function into a “flatten” struc-
ture. The original execution flow is preserved by a deliber-
ately constructed C switch statement [39].

Overall, different compilation settings reported in Table 5
result into a total of 12 cross-comparison settings (see Table 7).
We report the statistics about the complexity of evaluated
assembly functions in Table 6. The results are computed by
averaging all assembly functions in coreutils, binutils,
and the database containing real-world vulnerable software
under all different compilation, optimization, and obfuscation
settings. Particularly, for each assembly function, we measure
the number of covered paths, all instructions analyzed by
BinUSE, as well as encountered external callsites. It is seen
that programs in binutils and the real-world vulnerable
software manifest comparable complexity, whereas coreu-

tils programs have relatively few and shorter paths. We
also report the cyclomatic number [53], a commonly-used
metrics to assess complexity of a CFG: cyclomatic number is
defined as e� nþ 2, where e and n are the numbers of edges
and basic blocks in the CFG, respectively. In short, we inter-
pret that all assembly functions evaluated in this research
have reasonable complexity; according to our observation,
these assembly programs often contain nested loops and
many function calls (which are inlined by BinUSE during
analysis), inducing complex symbolic constraints. Neverthe-
less, BinUSE can rapidly finish the analysis of each assembly
function in severalminutes; see Section 8.3.

DNN Models. We use BinUSE to enhance four cutting-
edge DNN-based binary code function search tools: Bina-
ryAI [15], asm2vec [14], PalmTree [18], and ncc [13].
BinaryAI, published at AAAI’20, conducts assembly func-
tion embedding by computing basic block embeddings with
BERT [54] and then conducting graph embedding with
gated graph neural network (GGNN) [55]. BinaryAI pro-
vides APIs to access its pre-trained model and performs
binary function match (see https://github.com/binaryai).
We clarify that the training data of BinaryAI is not

TABLE 4
Average Top-1 Accuracy Enhancement Over the coreutils Dataset Using a ¼ 0:41 Over 11 Comparison Settings

Comparison Setting Obfuscation a ¼ 0:01 a ¼ 0:21 a ¼ 0:41 a ¼ 0:61 a ¼ 0:81

gcc -O0 versus clang -O3 -sub +12.1% +12.1% +12.2% +12.1% +11.4%
gcc -O0 versus clang -O3 -bcf +14.2% +14.2% +14.2% +14.2% +14.2%
gcc -O0 versus clang -O3 -fla +20.2% +20.1% +20.0% +19.5% +18.4%
-m32 -O0 versus gcc -O3 NA +9.7% +9.9% +9.9% +9.7% +9.7%
-m32 -O0 versus clang -O3 -sub +8.4% +7.9% +8.1% +8.1% +8.1%
-m32 -O0 versus clang -O3 -bcf +9.1% +9.2% +9.4% +9.4% +9.5%
-m32 -O0 versus clang -O3 -fla +17.3% +17.1% +16.3% +15.0% +14.2%
arm -O0 versus gcc -O3 NA +12.4% +12.2% +12.3% +12.0% +12.1%
arm -O0 versus clang -O3 -sub +11.8% +11.6% +11.7% +10.9% +11.0%
arm -O0 versus clang -O3 -bcf +15.3% +15.0% +15.0% +15.0% +15.0%
arm -O0 versus clang -O3 -fla +18.9% +18.6% +18.2% +17.2% +16.2%

Note that a ¼ 0:41 is decided using the gcc -O0 versus gcc -O3 comparison setting (with no obfuscation), which is not in these 11 comparison settings. We
find that a ¼ 0:41 manifests at least top-3 best accuracy enhancement over its four competitors across all settings, illustrating decent generalization of a ¼ 0:41.

TABLE 5
Seven Compilation Settings Over Our Test Datasets

Compiler Opt. Platform Obfuscation

gcc -O0 x86 64-bit NA
gcc -O3 x86 64-bit NA
clang -O3 x86 64-bit -sub

clang -O3 x86 64-bit -bcf

clang -O3 x86 64-bit -fla

gcc -O0 x86 32-bit NA
gcc -O0 ARM (aarch64) NA

These seven settings constitute 12 comparison settings, as shown in Table 7.
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disclosed. From its paper, it is stated that BinaryAI is pre-
trained over millions of binary samples [15] compiled
with different compilers, optimizations, and on architec-
tures. We find that BinaryAI manifests sufficiently high
accuracy which is comparable to its paper [15]. To our
best knowledge, BinaryAI denotes the state-of-the-art
binary embedding tool, which has been evaluated [15] to
outperform other popular embedding models that can be
smoothly extended for binary code, including Structure2-
vec [12], Word2vec [56], BERT [54], MPNN [57] and
CNN models.

asm2vec, published at IEEE S&P’20, generates assembly
function embedding using primarily an extended PV-DM
language embedding model [58] and graph neutral net-
works. We setup its official client which requires IDA-Pro.
Unfortunately, asm2vec does not provide a pre-trained
model to reproduce its reported results. We therefore follow
its paper by uploading executables in our datasets compiled
on x86 32-bit, 64-bit and ARM architectures with no optimi-
zation to its server to form the function repository and to
train a model. During experiments, we iteratively upload
executable and for each function inside the upload execut-
able, asm2vec returns the top-15 semantically similar func-
tions in the function repository.

ncc, published at NeurIPS’18, generates code embed-
dings from LLVM IR code by constructing a contextual flow
graph, which subsumes data flow and control flow features.
It then uses GNN-based embedding models to extract a
numerical representation. We leverage a popular static
binary lifter, RetDec [59], to convert binary code into
LLVM IR. To prepare inputs for ncc, we tried other binary
lifters, including mcsema [60] and mctoll [61]. They

manifest much worse LLVM IR lifting results compared
with RetDec. ncc is trained using coreutils.

PalmTree [18], published at CCS’21, provides a novel
language model for x86 machine instruction embedding.
PalmTree features a flexible self-supervised training proce-
dure over unlabeled assembly code, whose generated repre-
sentation is shown as effective over popular downstream
tasks like code similarity analysis, function prototype infer-
ence and static analysis. We clarify that PalmTree focuses
on computing a novel embedding of only machine instruc-
tions. According to its paper, it leverages mean pooling for
basic block-level embedding, and Gemini [12] for control
graph (function)-level embedding. We follow its paper to
equip PalmTree with mean pooling for basic block embed-
ding. As for graph-level embedding, we inquired the authors
of Gemini for the graph embedding model and setup details
but do not receive response by the time of writing. Therefore,
we set the graph embeddingmodel employed by BinaryAI,
GGNN, for the graph embedding of PalmTree. We refer
this implementation as PalmTree (mean/GGNN) in the
evaluation. Furthermore, since PalmTree manifests rela-
tively lower accuracy (see Table 8), we also replace mean
poolingwithHBMP [62], a popular recurrent neural network
(RNN)model, for basic block embedding. Table 8 shows that
HBMP can reasonably enhance the accuracy of PalmTree.
This improvement of PalmTree is referred to as PalmTree
(HBMP/GGNN) in the evaluation.

We use the instruction embedding model of PalmTree
pre-trained and released by the authors [63]. It is disclosed
by the authors that this model is trained with x64 binaries
from coreutils and binutils. This pre-trained model
has the embedding vector size as 128. Therefore, we bench-
mark PalmTree over 64-bit and 32-bit x86 executables and
skip analyzing executables on ARM. The function embed-
ding model for PalmTree is trained with binutils, com-
piled by gcc and clang, with -O0 and -O3. For PalmTree
(mean/GGNN), we configure the mean pooling dimension
and graph embedding dimension as 128. The message pass-
ing step, a key hyper-parameter for GGNN, is 5. For Palm-
Tree (HBMP/GGNN), we set the dimension of HBMP as
128; other settings are all the same with PalmTree (mean/
GGNN).

Clarification on Training Dataset Selection. We use normal
binary code to train those DNNmodels, whereas the trained
DNN models are assessed on its robustness in cross com-
pilers, cross optimizations, cross architectures, and obfusca-
tions settings. It is clear that DNN models are not exposed
to those challenging binary code samples, i.e., not having
those samples in the training datasets. On one hand, we
clarify that this setup is standard and shared by most exist-
ing works in this field [14], [15], [18], [29], [64]. The reason is
that we do not assume what obfuscation methods are
applied, given that obfuscation methods are diverse and
generally unpredictable in real-world settings [39]. On the
other hand, benchmarking binary code samples not in the
training dataset might potentially raise the concern such
that the training and evaluation datasets do not share a
“similar distribution.” Recent research has illustrated the
high potential of using diversely-optimized code samples to
augment deep learning models and enhance its robustness
of learned embedding representation [65]. We leave it as

TABLE 7
BinUSE Performance

Setting Obf. FN Rate FP Rate Failed Rate

gcc -O0 versus gcc -O3 NA 3.3% 24.4% 13.2%
gcc -O0 versus clang -O3 -sub 2.2% 24.6% 11.1%
gcc -O0 versus clang -O3 -bcf 2.6% 24.2% 11.8%
gcc -O0 versus clang -O3 -fla 1.9% 26.3% 12.7%
-m32 -O0 versus gcc -O3 NA 6.0% 23.2% 14.6%
-m32 -O0 versus clang -O3 -sub 5.1% 24.2% 14.4%
-m32 -O0 versus clang -O3 -bcf 5.6% 24.0% 15.4%
-m32 -O0 versus clang -O3 -fla 4.7% 25.5% 15.2%
arm -O0 versus gcc -O3 NA 5.4% 24.9% 13.7%
arm -O0 versus clang -O3 -sub 5.6% 25.9% 13.7%
arm -O0 versus clang -O3 -bcf 4.5% 26.0% 15.3%
arm -O0 versus clang -O3 -fla 4.1% 26.9% 14.0%
Total NA 4.2% 25.0% 13.8%

TABLE 6
Statistics of Assembly Functions in Different Datasets

coreutils binutils real-world vulnerable
software

#instructions 1385.7 7461.0 9556.4
#paths 6.745 37.18 21.98
#external
callsites

6.02 17.14 17.58

cyclomatic 19.11 36.91 32.83

The “cyclomatic” denotes the cyclomatic number [53], a common metric
(higher is better) to assess the complexity of control flow graphs.
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one future work to exploring augmenting DNN-based mod-
els with binary code samples transformed via standard opti-
mization and obfuscation techniques.

8.2 BinUSE Performance

Table 7 reports the performance of BinUSE regarding in total
of 12 comparison settings over the coreutils dataset. Most
comparisons entail challenging cross-compiler, cross-optimiza-
tion, and cross-architecture settings. For instance, the last com-
parison in Table 7 denotes a highly difficult setting which is
cross-architecture (ARM versus x86 64-bit), cross-compiler
(gcc versus clang), cross-optimization (-O0 versus -O3),
and also applied the control flow flattening obfuscation
(-fla) which extensively changes the control flow structures.

Overall, BinUSE is designed to be conservative. For
instance, we allow pairwise comparison and permutation
for function parameters and symbols (Section 5.3), although
such permutations incur more constraints to solve and
potential FPs. We interpret the overall FN rate (4.2%) is
practical and reasonable. Analyzing real-world binary code
reveals many engineering issues and corner cases, some of
which are difficult, if at all possible, to be addressed without
manual effort. Section 9 gives further discussions. BinUSE
can fail to analyze a number of functions with no external
callsites identified. Given each coreutils program con-
tains on average 103.7 functions, about 18.7 functions do not
have external callsites, which primarily contributes to the
FPs. In addition, recall to speed up the analysis, BinUSE
only analyzes a subgraph of each function, which can mis-
takenly treat different functions as equivalent and also
induce FPs.

In addition, the underlying reverse engineering and sym-
bolic execution tools can throw exceptions and terminate
the analysis for 13.8% of test cases (see the last column of
Table 7). Overall, the symbolic execution engine, angr, can
throw errors when inferring control transfer destinations of
code pointers. In particular, Table 7 shows that BinUSE

failed much more functions compiled with control flow flat-
tening obfuscation -fla. As previously mentioned, this
obfuscation converts CFG into a C switch statement and
stitches basic blocks with a dispatch node. Code pointers
are frequently used in the dispatcher node to guide control
transfers, inducing higher chances of failures when concret-
izing symbolic code pointers. Interested readers can refer to
Section 9.2 for further information on these reverse engi-
neering tool chain issues. Similarly, IDA-Pro can have incor-
rect external function recognition results.

Results Interpretation & Usage Discussion. Overall, to apply
the USE scheme in checking the equivalence of assembly
functions, we addressed a number of design challenges and
corner cases. To take both comprehension and scalability
into account, BinUSE is designed to only analyze a sub-
graph of the entire function. We emphasize that BinUSE is
not designed for stand-alone usage, but to compensate
mainstream DNN-based code search. Indeed, we report
that among all functions that can pass the equivalence
check, 87.9% have a confidence score of 1.0. With most
passed candidates tied at 1.0, it is unrealistic to compute
top-k accuracy. On the other hand, we report how DNN-
based binary function search tools are enhanced by BinUSE

in Section 8.5, Section 8.6, and Section 8.7, respectively.
The preceding evaluation, as well as the evaluations that

follow, all assume that RP is formed using highly opti-
mized (or obfuscated) binary code. We clarify that when the
reverse configuration is used, i.e., when highly optimized
binary code is searched in the RP formed by unoptimized
binary code (-O0), the performance should be different.
Nonetheless, we emphasize that employing highly opti-
mized and obfuscated binary code to generate RP is a com-
mon setting that is shared by most prior works and all tools
benchmarked in this research. Note that this is a practical
configuration. For example, we create the RP using binary
samples that were collected in the wild and may be highly
optimized and obfuscated. We then query RP and look for
vulnerabilities in those binary samples using a known vul-
nerability pattern produced in a standard and non-opti-
mized form (-O0).

8.3 Processing Time

Our BinUSE experiments are conducted on a Ubuntu 18.04
machine with Intel Xeon CPU E5-2678 and 256GB RAM.
BinUSE takes on average 56.6 CPU minutes to process two
coreutils executables (on average 25.0s to check two
functions), including all symbolic execution and constraint
solving tasks. Recall we set 10 minutes as the timeout
threshold of BinUSE when analyzing a function: there are
only three timeout cases out of all analyzed functions. We
list those three functions in [22].

This illustrates the strength of the USE scheme and our
practical USE design for equivalence checking. This also
indicates the engineering quality of angr. We report that
about 23.5% of processing time is spent on symbolic execu-
tion. Constraint solving takes the triple amount of time
(76.5%). BinUSE exhausts every path starting from the

TABLE 8
MRR and Top-1 Accuracy Comparison With the State-of-the-Art (DNN-Based) Binary Code Diffing and Search Tools
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function entry point, inlining every encountered user func-
tion calls until reaching the first external callsite. This entails
the major consumption of CPU resources. To compare with
BinUSE, we tested KLEE [33] (ver. 2.1) and an optimized
version named MOKLEE [34] with 10 coreutils execut-
ables and a timeout of 10 hours. KLEE takes several hours to
process one executable (3 timeouts) while MOKLEE has 8
timeouts and 2 exceptions. See our results at [66], [67].

BinUSE also has reasonable memory usage: our BinUSE
experiments were conducted by launching 30 angr pro-
cesses simultaneously on the server. The total peak memory
usage of 30 processes was seen as below 40GB. Overall,
BinUSE analyzes a subgraph of each individual function
and all inlined callees on the subgraph. Therefore, in con-
trast to standard SE (e.g., [34]), memory usage is not a pri-
mary concern for BinUSE.

Fig. 10 presents the processing time breakdown for com-
parison gcc -O0 versus gcc -O3. We report the processing
time of performing symbolic execution and solving con-
straints in Figs. 10a and 10b, respectively. Overall, we find
that the processing time scales approximately linear w.r.
t. the size of the executable files. This is intuitive: large exe-
cutable files have more functions, thus prolonging the sym-
bolic execution time of BinUSE. Similarly, large executable
files may likely contain more complex symbolic constraints,
thus prolonging the time taken to solve symbolic con-
straints. Nevertheless, it is seen that the majority of the
binary code samples can be analyzed within 2,000 CPU sec-
onds for symbolic execution, and 4000 CPU seconds for con-
straint solving. We thus interpret the cost as reasonable.

8.4 DNN Model Comparison

We first run four DNN-based binary function search tools,
BinaryAI, asm2vec, ncc, and PalmTree, on 12 compari-
son settings (refer to the first column of Table 8). PalmTree
cannot process executables on ARM platforms; we thus skip
the corresponding evaluation. Table 8 summarizes the per-
formance results. BinaryAI is seen to outperform all mod-
els across all different settings. While cross-architecture
settings impose major challenges, BinaryAI seems more
robust to cross-architecture changes, given it learns from
the platform-neutral microcode lifted by IDA-Pro [15].
Obfuscation, in particular control flow flattening (-fla), pri-
marily and consistently undermines the top-1 accuracy.
When lifting binary code into LLVM IR as the inputs of
ncc, we encountered plenty of reverse engineering errors.
The binary lifter, RetDec, throws exceptions when process-
ing certain binary code. For such cases, we only measure

the top-1 for the successfully processed binary code (about
40% remaining cases for binary code compiled with clang

-O3). The remaining functions are relatively simpler, which
explains the surprisingly higher accuracy for a few compari-
son settings of ncc.

BinaryAI is maintained by an industrial giant (Tencent),
indicating more resource devoted to training the model and
better engineering quality. We cannot recover the high accu-
racy reported in the asm2vec paper: we emphasize that both
software engineering and security communities have pointed
out similar issues [16], [68], [69]. Our evaluation shows that
asm2vec has 38.3% top-1 accuracy, which, although lower
than the accuracy reported in its paper, is highly consistentwith
findings of recent research [16], [68], [69]. Nevertheless, asm2-
vec still entails one cutting-edge DNN framework in this field
(outperforming traditional CFG-based matching [14]). Palm-
Tree (mean/GGNN) manifests reasonable accuracy. It nota-
bly outperforms asm2vec for the -sub obfuscation setting
over 64-bit x86 binary code. Nevertheless, PalmTree (mean/
GGNN) becomes less accurate in terms of 32-bit x86 execut-
ables. The reason could be that the pre-trainedmodel provided
by PalmTree primarily uses 64-bit x86 executables as the
training data. We clarify that PalmTree does not provide full
details of model re-training, and therefore, it is unclear for us
to somehow re-train its releasedmodel using 32-bit x86 execut-
ables. PalmTree (HBMP/GGNN) shows promising improve-
ment over PalmTree (mean/GGNN) on 64-bit executables;
its accuracy is close to BinaryAI. Nevertheless, BinUSE still
offers a high enhancement for PalmTree (mean/GGNN), as
will be reported in Section 8.5.

8.5 DNN Model Enhancement

To measure the enhancement of DNN-based approaches
using BinUSE, we try to answer two questions: 1) RQ1: can
BinUSE enhance different DNN-based binary code function
search tools? and 2) RQ2: can BinUSE enhance BinaryAI

of different settings? For RQ2, we take BinaryAI as the tar-
get since it notably outperforms the other three models.
Also, in addition to the enhancement of DNN-based meth-
ods, we also explore RQ3: is BinUSE general enough to
enhance conventional binary diffing tools based on program
structure-level information? For RQ3, we benchmark a pop-
ular binary diffing tool, FuncSimSearch [70], developed and
maintained by Google Project Zero.

RQ1. Table 9 presents the evaluation results in terms of
different settings. Consistently, we measure top-1, top-3,
and top-5 enhancement. Table 9 shows that all DNN-based
approaches can be noticeably improved using BinUSE. This
is intuitive and consistent with our motivation: DNN mod-
els are generally learning from coarse-grained code features
which are not resilient toward various challenging settings,
thus making very high false alarms. BinUSE is designed to
address their key limitation in a consistent manner. BinUSE
is seen to identify more opportunities to improve other
DNN-based tools rather than BinaryAI. As previously
mentioned, BinaryAI has higher accuracy than others:
BinaryAI should have fewer false predictions to be regu-
lated. It is also interesting to compare BinaryAI and
PalmTree (HBMP/GGNN): while these two models show
close accuracy (the latter model is slightly worse) in Table 8,

Fig. 10. Processing time breakdown for compilation setting gcc -O0 ver-
sus gcc -O3.
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BinUSE delivers a much higher enhancement toward

PalmTree (HBMP/GGNN). The main reason is that Palm-

Tree (HBMP/GGNN) is seen to behave strangely over

small assembly functions. Therefore, when assessing Palm-

Tree (HBMP/GGNN), we only use functions with over

three basic blocks, resulting in fewer analyzed functions. As

a result, the enhancement ratio thus becomes higher, as the

divider (i.e., the total number of analyzed functions; the

“N” in Formula 1) of this ratio is small.
This evaluation subsumes four recent DNN-based binary

code search tools which have been shown to suffer from
similar issues and can be consistently enhanced. We envi-
sion the opportunities to primarily enhance the perfor-
mance of other research sharing the similar methodology
and potential limits. We leave it as one future work to boost
other DNNmodels with BinUSE.

Case Study. Fig. 11 presents a case study by comparing
coreutils program shuf compiled with gcc -O0 versus
compiled with clang -O3. Recall ncc, as reported in Sec-
tion 3, makes similar errors. We consistently pick this case
given its smaller size to ease our presentation. Fig. 11a
presents the CFG of function rpl_fflush when compiled
with gcc -O0. Fig. 11b presents the CFG of rpl_fflush

when clang -O3 is used.
When full optimization is enabled, the relatively

“flattened” CFG of rpl_fflush in Fig. 11a is converted into a
visually linear representation. BinaryAI instead treats
another function, xrealloc (Fig. 11c), as the top-1 match
with rpl_fflush in Fig. 11a. We interepret the results as rea-
sonable; xrealloc is seen to sharemore structure-level simi-
larity with rpl_fflush, and thus misleading BinaryAI. In
contrast, BinUSE constructs symbolic formulas representing
the inputs of two external callsites in rpl_fflush, and use
these formulas to determine the semantics similarity between
rpl_fflush in Fig. 11a and rpl_fflush in Fig. 11b.

RQ2. To answer RQ2, we studied three key hyper-parame-
ters of representation learning relevant to the embedding vec-
tor dimensions. In general, different dimensions primarily
influence model accuracy: longer embedding could convey
subtle information on input data, while smaller onesmight not
represent the semanticswell enough.Nevertheless, longer vec-
tors indicate more challenges for model training, and might
potentially undermine the model robustness. BinaryAI sub-
sumes three embedding dimension-related hyper-parameters,

which are token embedding dimension, constant embedding
dimension, and graph embedding dimension. Recall Bina-
ryAI first performs basic block-level embedding and then
graph-level embedding: token and constant embedding
dimensions are hyper-parameters used in the first step,
whereas the dimension of graph embedding primarily calibra-
tes the quality of graph embedding. Table 10 reports that for
all hyper-parameters, despite different embedding dimen-
sions, BinUSE consistently enhances the accuracy. Overall,
this evaluation reveals an intuitive observation: equivalence
check consistently resolves high false alarms despite changes
in themodel settings, indicating the generalizability ofBinUSE
from another important aspect.

RQ3. This research primarily focuses onDNN-based binary
code function search, given thatDNN-based approachesmani-
fest highly promising accuracy and have largely outperformed
conventional program structure-based algorithms like graph
isomorphism [71]. Nevertheless, it is easy to see that BinUSE is
not limited to enhancing onlyDNN-based approaches. In prin-
ciple, we argue that binary diffing based on program struc-
tures generally suffers from making low discriminable and
low robust predications. RQ3empirically validates our argu-
ment, by using BinUSE to boost one state-of-the-art binary
diffing tool, FuncSimSearch, which computes the Simhash
score over control flowgraphs to efficiently decide the distance
of assembly functions.

Table 11 reports the evaluation results. We find that Func-
SimSearch showsmuchworse results comparedwith contem-
porary DNN-based methods. Therefore, BinUSE can largely
enhance its accuracy for all the assessed settings. The rela-
tively low accuracy of FuncSimSearch is also pointed out in
the asm2vec paper. This is reasonable, given modern DNN
models have shown a highly encouraging capability of com-

TABLE 9
Boosting DNN-Based Tools Over coreutils Programs With BinUSE

Comparison Obf. BinaryAI(%) ncc (%) asm2vec (%) PalmTree(mean/GGNN)

(%)
PalmTree(HBMP/GGNN)

(%)

MRR Top-1/Top-3/Top-5 MRR Top-1/Top-3/Top-5 MRR Top-1/Top-3/Top-5 MRR Top-1/Top-3/Top-5 MRR Top-1/Top-3/Top-5

gcc -O0 versus gcc -O3 NA +16.9 +11.0/+22.3/+24.2 +34.4 +30.1/+42.3/+42.2 +20.7 +16.9/+23.0/+27.5 +27.4 +30.7/+30.4/+24.1 +21.6 +24.8/+22.5/+17.9
gcc -O0 versus clang -O3 -sub +15.6 +12.1/+18.4/+19.1 +24.9 +30.5/+22.9/+17.2 +26.5 +21.5/+29.4/+34.7 +25.1 +30.3/+24.1/+20.0 +18.2 +23.3/+15.9/+12.5
gcc -O0 versus clang -O3 -bcf +17.3 +14.2/+21.9/+20.5 +32.0 +40.7/+27.2/+21.3 +27.9 +24.2/+30.6/+33.9 +35.5 +40.6/+36.7/+30.9 +28.0 +34.3/+26.6/+21.6
gcc -O0 versus clang -O3 -fla +25.0 +20.0/+29.6/+31.8 +30.1 +35.9/+30.3/+23.0 +34.0 +29.4/+37.8/+41.8 +47.2 +48.4/+52.6/+49.8 +49.6 +53.1/+54.0/+49.4
-m32 -O0 versus gcc -O3 NA +14.4 +9.7/+18.8/+19.3 +34.6 +30.9/+42.6/+42.4 +20.9 +17.5/+22.8/+25.8 +40.8 +45.1/+43.2/+37.7 +43.4 +47.3/+45.7/+41.6
-m32 -O0 versus clang -O3 -sub +11.4 +8.1/+13.8/+16.2 +28.9 +37.0/+25.7/+16.3 +22.8 +19.7/+26.0/+26.6 +38.8 +42.9/+40.5/+35.9 +42.2 +45.9/+44.9/+40.4
-m32 -O0 versus clang -O3 -bcf +12.5 +9.4/+16.8/+15.6 +32.3 +40.9/+28.8/+20.5 +22.5 +20.6/+24.5/+25.8 +41.0 +42.9/+45.3/+41.8 +41.3 +42.9/+46.0/+42.5
-m32 -O0 versus clang -O3 -fla +20.9 +16.3/+25.6/+27.7 +33.1 +42.3/+28.8/+21.0 +24.6 +22.1/+26.5/+29.0 +45.8 +44.9/+53.2/+51.3 +47.4 +47.1/+53.8/+52.3
arm -O0 versus gcc -O3 NA +17.3 +12.3/+21.9/+23.7 +35.8 +32.4/+42.6/+42.6 +34.1 +29.0/+38.2/+42.1 NA NA/NA/NA NA NA/NA/NA
arm -O0 versus clang -O3 -sub +15.0 +11.7/+17.6/+18.8 +26.6 +34.9/+22.1/+14.8 +31.4 +27.2/+34.8/+38.3 NA NA/NA/NA NA NA/NA/NA
arm -O0 versus clang -O3 -bcf +17.4 +15.0/+20.9/+19.9 +28.3 +36.6/+23.6/+17.3 +32.8 +28.5/+36.4/+39.6 NA NA/NA/NA NA NA/NA/NA
arm -O0 versus clang -O3 -fla +22.6 +18.2/+26.4/+29.6 +30.2 +36.9/+28.8/+22.5 +33.7 +28.3/+38.1/+42.3 NA NA/NA/NA NA NA/NA/NA

Fig. 11. Case study using coreutils program shuf.

WANG ETAL.: ENHANCING DNN-BASED BINARYCODE FUNCTION SEARCHWITH LOW-COST EQUIVALENCE CHECKING 241

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 19,2023 at 13:11:59 UTC from IEEE Xplore.  Restrictions apply. 



prehending complex (fuzzy) structures. In addition, DNN
models can learn from comprehensive sets of historical data.
On the other hand, BinUSE exhibits highly promising results
in boosting FuncSimSearch. In sum, our exploration toward
RQ3 shows that code structure-based binary diffing tools
share common limits of making low discriminable and low
robust predictions, particularly against changes introduced
by optimizations, obfuscations and platforms. We show that
equivalence check enabled by BinUSE can reduce high false
alarms of structure-based approaches in a generalmanner.

Overall, evaluation in this section consistently demon-
strates that high false alarms made by popular structure-
based (DNN) tools can be enhanced by BinUSE in a general,
efficient, and unique manner. We thus advocate combining
binary code search with BinUSE and achieve a synergistic
effect in production usage.

8.6 Vulnerable Function Searching

We launch a case study by applying BinUSE to augment a
vulnerability search task toward a public vulnerability data-
set. This application mimics a common security usage sce-
nario: given an assembly function f from a suspicious piece
of executable, we search against a database D of functions
with known vulnerabilities and decide if f can be matched
with any function inD.

As with asm2vec, we use the dataset D released by [26].
This database contains program samples of eight CVE vul-
nerabilities. We evaluate seven CVEs, because the other
CVE, venom, requires rebuilding qemu (ver. 2.4.0), which
cannot be processed by Obfuscator-LLVM. D contains 12
functions of seven CVEs, including the infamous Heart-
bleed exploiting OpenSSL crypto library, and Shellshock

allowing remote attackers to execute arbitrary commands
on the victim machine. To enhance the difficulty, D also
contains 1,225 “negative samples”, denoting functions with
no vulnerability. A vulnerability search engine must match
vulnerable inputs with correct vulnerability samples in D at
top-1, without interference from the remainder (benign)
functions.

At this step, we compile samples in D into a database
Dasm of assembly functions using four obfuscation settings,
-sub, -bcf, -fla, and -hybrid, respectively. Note that the
hybrid setting, referred to as -hybrid, combines all three
obfuscation methods together during compilation. We also
enable full optimization -O3 when compiling each sample
program and the target function. In short, given a heavily-
optimized (-O3) assembly function with known vulnerabil-
ities, we retrieve its matched functions from Dasm and check
if its correct match, functions with the same vulnerabilities,
exist in top-1 ranked candidates.

At this step, we measure asm2vec, BinaryAI, and two
versions of PalmTree. We omit to evaluate ncc as we find
its employed binary lifter failed too many cases when proc-
essing these real-world complex software. We report the
evaluation results for each setting in Tables 12, 13, 14, and
15. asm2vec seems to struggle with OpenSSL and Wire-
shark, given that both programs are highly complex. For
three versions of OpenSSL and Wireshark, asm2vec rank
the true matches much lower. For instance, asm2vec ranks
the true match of Heartbleed vulnerability in OpenSSL (ver.
1.0.1f) at top-17, implying that users may need to manually
compare at least 17 copies of programs in Dasm to confirm
that a Heartbleed vulnerability exists in the suspicious
input. In contrast, BinUSE can successfully match the suspi-
cious input with the Heartbleed vulnerability inDasm at top-
1. When analyzing another infamous CVE, ws-snmp,
asm2vec also achieves a much lower accuracy. We find
that this vulnerability contains a large CFG, which presum-
ably hinders asm2vec’s graph-level embedding computa-
tion that is based on random walk. Given that said, with the
help of BinUSE, asm2vec can place the true vulnerable
function at top-1.

Similar observations are obtained from evaluations of
BinaryAI and PalmTree. BinaryAI generally shows
promising accuracy compared with asm2vec. Our manual

TABLE 10
Boosting BinaryAIWith Different Dimensions

graph embedding 16 32 64 128 256
Top-1 +15.5% +16.0% +13.2% +7.5% +10.7%
Top-3 +13.1% +16.1% +8.3% +9.5% +9.4%
Top-5 +15.9% +13.9% +13.0% +14.5% +12.9%
MRR +14.0% +14.5% +11.4% +8.5% +10.0%

token embedding 16 32 64 128 256
Top-1 +16.5% +10.6% +14.3% +7.5% +11.1%
Top-3 +19.1% +9.8% +16.8% +9.5% +10.0%
Top-5 +15.3% +13.5% +13.6% +14.5% +12.2%
MRR +15.6% +10.8% +13.6% +8.5% +10.2%

constant embedding 16 32 64 128 256
Top-1 +14.4% +7.5% +14.8% +18.5% +15.2%
Top-3 +14.2% +9.5% +17.2% +18.4% +14.0%
Top-5 +12.8% +14.5% +14.4% +15.1% +13.6%
MRR +12.9% +8.5% +14.3% +16.6% +13.7%

TABLE 11
Enhancing FuncSimSearch

Config. gcc -O0

versus *
gcc -O0 -m32

versus *
arm -O0

versus *

Top-1 +49.8% +48.2% +49.0%
Top-3 +49.8% +50.7% +52.6%
Top-5 +47.5% +48.6% +50.7%
MRR +48.5% +47.4% +49.2%
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investigation shows that BinaryAI extracts representative
constant strings from these binary executables; relying on
these constant strings enables accurate matching between
vulnerable functions. While BinaryAI can still make a
number of mistakes, BinUSE can effectively improve its
accuracy by correctly matching all vulnerable functions at
top-1. Compared with BinaryAI and asm2vec, PalmTree
shows worse accuracy in this evaluation. We evaluate two
configurations of PalmTree in Table 14 and Table 15,
respectively. While our enhancement, by replacing its
default mean pooling with HBMP, reasonably increases the
accuracy in this task, PalmTree still makes a considerable
number of inaccurate matching, particularly for obfuscated
binary code. For instance, when enabling control flow flat-
tening, denoted as -fla and -hybrid in Table 14 and
Table 15, the true matching is lower than top-1000. Users
can hardly identify the CVE vulnerability from the suspi-
cious input, given that their true matches in Dasm is ranked
in such low positions. We also wish to clarify that there are
a few cases in Table 15 which are not in top-1 after enhance-
ment of BinUSE(e.g., the wget case under the -hybrid

compilation setting). We clarify that all of these cases that
are not in the top-1 are because multiple cases, including
the true positive case itself, are in a tie at top-1. While these
increase the difficulty for users to confirm the vulnerability,
BinUSE still largely reduces the effort. For instance, accord-
ing to Table 15, while users may need to check 944 cases to
confirm that the suspicious input really contains CVE 2014-
4877 (if it is at all possible), users only need to check 14 cases
after using BinUSE.

Discussion of BinUSE ’s Enhancement. Despite the errors
made by existing DNN-based tools for this task, BinUSE can
successfully identify the true matches with the highest confi-
dence scores respectively. In addition to precisely capturing
the semantics-level constraints, our manual investigation
shows that BinUSE, by matching the names of external call-
sites, indeed exposes a “shortcut” of searching for vulnerable
functions. In particular, we find that in these real-world pro-
grams (e.g., OpenSSL), each assembly function, including
functions with CVE vulnerabilities, usually has a distinct call-
site pattern. In otherwords, employing external callsite names
has already helped to match quite a number of vulnerable

TABLE 12
Augmenting Vulnerability Search of asm2vec Using BinUSE

Vulnerability CVE Software/Version -sub -bcf -fla -hybrid

Shellshock #1 2014-6271 Bash 4.3 1! 1 1! 1 1! 1 1! 1
Bash 4.3.30 1! 1 1! 1 1! 1 1! 1

Shellshock #2 2014-6271 Bash 4.3 1! 1 1! 1 1! 1 1! 1
Bash 4.3.30 1! 1 1! 1 1! 1 1! 1

ffmpeg 2015-6826 ffmpeg 2.6.4 1! 1 1! 1 1! 1 1! 1

Clobberin’ Time 2014-9295 ntpd 4.2.7 1! 1 1! 1 1! 1 1! 1
ntpd 4.2.8 1! 1 1! 1 1! 1 1! 1

Heartbleed 2014-0160 OpenSSL 1.0.1e 1! 1 1! 1 1! 1 21! 1
OpenSSL 1.0.1f 1! 1 1! 1 2! 1 17! 1
OpenSSL 1.0.1g 1! 1 1! 1 1! 1 27! 1

wget 2014-4877 wget 1.8 1! 1 1! 1 1! 1 1! 1
ws-snmp 2011-0444 Wireshark 1.12.8 1! 1 8! 1 > 50! 1 > 50! 1

The numbers before and after the arrow represent the top-k ranking. For instance, “1” means an input software with a vulnerability can be matched with correct
vulnerability samples in the databse [26] at top-1. Improvement enabled by BinUSE is shown as “!”.

TABLE 13
Augmenting Vulnerability Search of BinaryAI Using BinUSE

Vulnerability CVE Software/Version -sub -bcf -fla -hybrid

Shellshock #1 2014-6271 Bash 4.3 1! 1 1! 1 1! 1 1! 1
Bash 4.3.30 1! 1 1! 1 1! 1 1! 1

Shellshock #2 2014-6271 Bash 4.3 1! 1 1! 1 3! 1 4! 1
Bash 4.3.30 1! 1 1! 1 4! 1 1! 1

ffmpeg 2015-6826 ffmpeg 2.6.4 1! 1 5! 1 1! 1 1! 1

Clobberin’ Time 2014-9295 ntpd 4.2.7 1! 1 1! 1 1! 1 1! 1
ntpd 4.2.8 1! 1 1! 1 1! 1 1! 1

Heartbleed 2014-0160 OpenSSL 1.0.1e 1! 1 1! 1 1! 1 4! 1
OpenSSL 1.0.1f 1! 1 1! 1 1! 1 1! 1
OpenSSL 1.0.1g 1! 1 1! 1 1! 1 3! 1

wget 2014-4877 wget 1.8 1! 1 1! 1 1! 1 3! 1
ws-snmp 2011-0444 Wireshark 1.12.8 1! 1 1! 1 1! 1 1! 1

The numbers before and after the arrow represent the top-k ranking. For instance, “1” means an input software with a vulnerability can be matched with correct
vulnerability samples in the databse [26] at top-1. Improvement enabled by BinUSE is shown as “!”.
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real-world functions in a very effective manner. In contrast,
many programs in coreutils and binutils contain func-
tions with closely related semantics. For instance, quote_-
mem, quote_n_mem, quoteargs_n_mem functions in
typical coreutils programs share nearly identical callsite
patterns. This imposes an extra challenge for function match-
ing ofBinUSE. In contrast, vulnerable function search evalua-
tion in this section reveals that BinUSE can exhibit even
better performancewhen processing real-world software.

In short, evaluation in this section reveals highly encour-
aging results when using BinUSE in analyzing real-world
applications for security purposes. We also interpret that
evaluation in this section justifies the necessity of consider-
ing fine-grained callsite information when performing func-
tion matching.

8.7 Extension of BinUSE

As defined in Section 2.1, our proposed method compares a
target function ft to every function in a repository RP of
assembly functions. While the customized USE adopted by

BinUSE is shown as efficient (Section 8.3), it is still costly in
general. Hence, comparing ft with every function f 2 RP is
expensive. In this section, we study a possible extension of
BinUSE; we aim to reduce the cost, by comparing ft with
top-k functions RPk � RP first returned by DNN-based
binary matching tools.

Setup. At this step, we benchmark a large-scale and chal-
lenging dataset, Linux binutils. Each program in binu-

tils contains about 1,765.0 functions. That is, while
analyzing each program in coreutils forms RP with
about one hundred functions, analyzing each binutils

faces an RP with about 15 � more functions. Table 16
reports the top-1 accuracy over binutils test cases using
two DNN-based tools. At this step, asm2vec is not
included, given that its local client crashed when processing
binutils test cases [72]. As for ncc, its employed binary
lifter fails or generates broken LLVM IR code over binu-

tils programs; we thus skip evaluating ncc.
In general, Table 16 illustrates that both DNN models,

particularly PalmTree, can be improved over binutils

test cases. However, given that BinUSE by default needs to

TABLE 14
Augmenting Vulnerability Search of PalmTree (Mean/GGNN) Using BinUSE

Vulnerability CVE Software/Version -sub -bcf -fla -hybrid

Shellshock #1 2014-6271 Bash 4.3 1! 1 41! 1 2283! 1 2392! 1
Bash 4.3.30 1! 1 1! 1 731! 1 1564! 1

Shellshock #2 2014-6271 Bash 4.3 1! 1 2! 1 2145! 1 2329! 1
Bash 4.3.30 1! 1 1! 1 2193! 1 2544! 1

ffmpeg 2015-6826 ffmpeg 2.6.4 1! 1 235! 2 32! 2 34! 2

Clobberin’ Time 2014-9295 ntpd 4.2.7 1! 1 2! 1 582! 1 1538! 1
ntpd 4.2.8 1! 1 4! 1 428! 1 396! 1

Heartbleed 2014-0160 OpenSSL 1.0.1e 1! 1 578! 1 724! 1 808! 1
OpenSSL 1.0.1f 1! 1 421! 1 2141! 1 2095! 1
OpenSSL 1.0.1g 1! 1 81! 1 2183! 1 2297! 1

wget 2014-4877 wget 1.8 1! 1 738! 11 2593! 15 1946! 9
ws-snmp 2011-0444 Wireshark 1.12.8 1! 1 4! 1 143! 1 419! 6

The numbers before and after the arrow represent the top-k ranking. For instance, “1” means an input software with a vulnerability can be matched with correct
vulnerability samples in the databse [26] at top-1. Improvement enabled by BinUSE is shown as “!”.

TABLE 15
Augmenting Vulnerability Search of PalmTree (HBMP/GGNN) Using BinUSE

Vulnerability CVE Software/Version -sub -bcf -fla -hybrid

Shellshock #1 2014-6271 Bash 4.3 1! 1 1! 1 198! 1 110! 1
Bash 4.3.30 1! 1 2! 1 92! 1 77! 1

Shellshock #2 2014-6271 Bash 4.3 1! 1 1! 1 149! 1 287! 1
Bash 4.3.30 1! 1 17! 1 132! 1 238! 1

ffmpeg 2015-6826 ffmpeg 2.6.4 1! 1 387! 2 1232! 2 1345! 2

Clobberin’ Time 2014-9295 ntpd 4.2.7 1! 1 1! 1 80! 1 95! 1
ntpd 4.2.8 1! 1 1! 1 54! 1 132! 1

Heartbleed 2014-0160 OpenSSL 1.0.1e 1! 1 549! 1 1430! 1 1536! 1
OpenSSL 1.0.1f 1! 1 103! 1 1413! 1 1454! 1
OpenSSL 1.0.1g 1! 1 65! 1 1425! 1 2743! 1

wget 2014-4877 wget 1.8 1! 1 67! 1 944! 14 801! 9
ws-snmp 2011-0444 Wireshark 1.12.8 1! 1 33! 1 425! 4 533! 5

The numbers before and after the arrow represent the top-k ranking. For instance, “1” means an input software with a vulnerability can be matched with correct
vulnerability samples in the databse [26] at top-1. Improvement enabled by BinUSE is shown as “!”. We have manually confirmed that after enhancement of
BinUSE, all cases that are not in the top-1 (e.g., wget under -hybrid) are because multiple cases, including the true positive case itself, are in a tie at top-1.
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compare the target function ft with every function in RP ,
we see it as necessary to optimize the usage of BinUSE, by
confining BinUSE’s analysis toward the top-K functions
ranked by DNN models. Note that this extension requires
to change our re-order algorithm defined in Section 6 only
slightly: in our current experiments, we pick K as 100. Once
DNN models have decided the top-100 matched functions
with the target function ft, BinUSE is used to compare these
100 ranked functions with ft and adjusts their ranking,
using our re-order strategy presented in Section 6. This
way, BinUSE’s comparison is reduced from the size of RP
(jRP j) to only 100, reducing its cost when analyzing binu-

tils programs. Nevertheless, since BinUSE only accesses
and re-orders the top-100 assembly functions ranked by the
DNN model, the enhanced top-k accuracy (where k � 100)
is bounded by the DNN model’s top-100 accuracy. In other
words, if the target DNN model is of low accuracy even for
top-100, the chance of enhancing it is slim.

Results. We report enhancement over BinaryAI and
PalmTree in Table 17. Note that in this table, we evaluate 12
comparison settings which are consistent with our previous
evaluation setups. However, we clarify that, as disclosed by
the BinaryAI authors, binutils programs are in the train-
ing dataset of BinaryAI following three comparison set-
tings: gcc -O0 versus gcc -O3, gcc -m32 -O0 versus gcc
-O3, and arm -O0 versus gcc -O3. It generally explains
BinUSE’s relatively low enhancement over these three set-
tings: for instance, for the gcc -m32 -O0 versus gcc -O3

comparison setting, BinUSE leads to even negative enhance-
ment. We manually looked at these cases, and confirmed
that they are due to false positives of BinUSE. Similarly,
BinUSE delivers low enhancement toward BinaryAI

under three comparison settings using the -sub obfuscation.
Ourmanual study shows that -sub obfuscation does not pri-
marily influence the control flow structures and imposes less
challenge to BinaryAI. As a result, these three -sub com-
parison settings are mostly similar to their unobfuscated
comparison settings which are in the training dataset of
BinaryAI, thus becoming hard to be further enhanced by
BinUSE. Nevertheless, for the other two obfuscation settings
(-bcf and -fla), BinUSE delivers general higher enhance-
ment, despite the fact that these two obfusction methods
heavily changed the control flow structures.

BinUSE achieves higher enhancement toward Palm-

Tree comparing to that of BinaryAI. This is primarily due
to the relatively lower accuracy of PalmTree on binutils

test cases, leaving more chances for enhancement. On the

other hand, compared with evaluations on the coreutils

dataset, BinUSE achieves lower enhancement. In addition
to the general difficulty of analyzing binutils functions,
we clarify that for this evaluation, BinUSE only analyzes
the top-100 functions returned by DNN-based tools.
According to our observation, some true matchings are not
even within the top-100 functions. To further explore a
higher degree of accuracy enhancement, users may consider
leveraging top-150 or top-200 functions returned by the
DNN-based tools.

Other Possible Extensions. Along with the extension pro-
posed and evaluated in this section, we envision other ways
to extend the usage of BinUSE. In short, recent advances in
explainable Artificial Intelligence (XAI) techniques [73] (e.g.,
through the use of attention mechanisms [74]) have enabled
the identification of the most influential code components in
terms of DNN models’ decision making. As a result, we
anticipate to extend BinUSE and deliver a “post-ver-
ification” pipeline in which we first use XAI techniques to
flag influential code fragments c1 and c2, which are princi-
pally responsible for the DNN models’ decision to match
assembly functions f1 and f2. We can then launch BinUSE

toward those flagged c1 and c2 to check their semantics
equivalence. Note that such critical code fragments c1 and c2
should usually be much smaller than the whole assembly
functions f1 and f2, substantially lowering the cost of
BinUSE. We leave this for future exploration; the primary
difficulty would be properly delineating the code boundary
of c1 and c2, as slight drifting in the formed symbolic con-
straints could flip its decision from sat to unsat, or vice versa.

9 DISCUSSION

Soundness and Completeness. BinUSE’s strength is in its abil-
ity to perform practical binary function-level equivalence
checking with a low rate of false alarms and high speed.
However, Our evaluation found that when BinUSE is used
to analyze varied sets of real-world binary code, an average
FP rate of 25.0% and an average FN rate of 4.2% may occur
(see Table 7).

Besides over-approximating legitimate input space, our
USE implementation, BinUSE, is not sound due to some engi-
neering challenges (e.g., cross-architecture comparison). Also,
the underlying SE engine, angr [51], has a lightweight but
unsound memory model. In addition, a number of functions
do not contain external callsites and are therefore not analyz-
able by BinUSE. They also contribute to the errors of BinUSE.

TABLE 16
MRR and Top-1 Accuracy Comparison With the State-of-the-Art (DNN-Based) Binary Code Diffing and Search

Tools Over binutils Programs
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However, unlike prior SE-based binary clone detection tech-
niques that analyze either basic blocks or execution traces [4],
[20], BinUSE is scalable and efficient to analyze whole cor-

eutils programs. To provide a practical USE design for
function equivalence checking, the design of BinUSE trades
completeness for speed. Note that the function search prob-
lem is difficult in that the true positive rate in the population
of all the functions is quite low ( 1

103:7 	 1:0% given that each
coreutils executable in our dataset contains about 103.7
functions). Along with FPs and FNs, Table 7 also reports that
analyzing 13.8% coreutils functions are terminated due to
the underlying symbolic execution engine or the reverse engi-
neering platform exceptions.

In the rest of this section, we discuss all issues that can
induce false alarms of BinUSE in Sections 9.1 and 9.2. Sec-
tion 9.3 further lists issues that can lead to the failure of
BinUSE. We clarify that many issues are also pointed out
by previous SE tools [75]. BinUSE will become sound after
fixing these (implementation-level) issues, which is highly
challenging and beyond the consideration of this work and
many other “sound” SE engines (e.g., due to unsound mem-
ory model; see discussions Section 9.2).

9.1 External Callsites Inconsistency

To compare a target assembly function ft with another func-
tion fs, BinUSE is designed to extract semantics signatures
from external function call inputs for equivalence checking.
In other words, we assume that compiling a C function
source code should not generate two assembly functions
with inconsistent external callsites. While these assumptions
generally hold for even challenging settings (e.g., cross-
architecture or obfuscation) evaluated in this research, we
listed all corner cases violating our assumptions in this
section.

External Callsite Renaming. To construct constraints and
check the semantics equivalence of two callsites, we first
decide if they are referring to the same external function.
Apparently, an external callsite of fopen should not be
matched to a callsite of fwrite.

However, compiler optimization could rename certain C
library functions. For instance, we find that when compiling

coreutils programs with optimizations enabled, function
calls to C library function dcgettext could be optimized
into gettext but does not change the semantics. For the
current implementation, we manually map a library func-
tion to functions that could be a possible replacement of it
due to optimizations. This way, we consider dcgettext,
dgettext, and gettext are identical library functions.
However, we admit that our map is not complete, which
could induce mismatching of certain callsites referring to
different C library calls. We have discussed this issue and
listed all renaming cases we constructed in Section 5.3. To
our knowledge, it subsumes all possible C library replace-
ments that could be found in our test cases.

External Callsite Elimination Due to Optimization. Compiler
optimizations could replace standard C library calls into buil-
din function calls, and further inline the buildin function. For
instance, we find that gcc, with -O3 optimization enabled,
could inline a buildin version of C library functions such as
memset and memcpy. These would save the extra cost of
function calls and returns. In contrast, clang seems to retain
those library calls evenwith full optimizations enabled.

This could cause inconsistency and FNs when comparing
assembly functions compiled by gcc and clang, since cer-
tain library callsites (e.g., memset) in assembly functions
compiled by clang would never find its matched callsite in
an assembly function compiled by gcc.

Zero External Callsites in a Function. When comparing two
functions ft and fs, it is possible that neither function’s
expanded CFG contains any external calls. For such cases,
our current implementation has to skip the comparison.
Two functions are very unlikely to have identical function-
ality in case one function’s expanded CFG contains external
calls and the other does not. Nevertheless, FNs could still be
introduced, in case all external function calls are eliminated
by compiler optimizations from the expanded CFG,
although the likelihood is extremely low. Furthermore, if no
external callsites can be found in both functions, we rely on
the similarity results yielded by DNN-based tools for
comparison.

No Parameters in an External Callsite. Certain C library calls
do not have parameters (e.g., time). For such cases, our cur-
rent implementation instead extracts the path conditions of

TABLE 17
Boosting DNN-Based Tools With BinUSE Over binutils Programs

Comparison Setting Obfuscation BinaryAI(%) PalmTree (HBMP/GGNN)(%)

MRR Top-1 Top-3 Top-5 MRR Top-1 Top-3 Top-5

gcc -O0 versus gcc -O3 NA +1.0 +0.5 +1.7 +1.7 +4.6 +5.5 +4.3 +3.4
gcc -O0 versus clang -O3 -sub +1.0 +0.8 +1.5 +1.4 +5.4 +6.7 +5.3 +4.0
gcc -O0 versus clang -O3 -bcf +4.2 +4.9 +4.0 +3.7 +8.2 +9.2 +8.3 +7.7
gcc -O0 versus clang -O3 -fla +5.8 +6.6 +6.1 +5.1 +3.0 +3.0 +3.4 +3.2
gcc -m32 -O0 versus gcc -O3 NA -1.7 -2.2 -1.1 -0.9 +5.1 +5.0 +5.8 +5.5
gcc -m32 -O0 versus clang -O3 -sub -1.9 -2.2 -1.6 -1.5 +5.7 +5.7 +6.5 +5.8
gcc -m32 -O0 versus clang -O3 -bcf +1.0 +1.5 +0.9 +0.4 +4.0 +4.0 +4.6 +4.5
gcc -m32 -O0 versus clang -O3 -fla +2.1 +2.7 +2.3 +1.3 +1.7 +1.6 +2.1 +2.0
arm -O0 versus gcc -O3 NA +0.8 +0.6 +1.2 +1.2 NA NA NA NA
arm -O0 versus clang -O3 -sub +0.4 +0.4 +0.7 +0.6 NA NA NA NA
arm -O0 versus clang -O3 -bcf +3.9 +4.8 +3.8 +2.9 NA NA NA NA
arm -O0 versus clang -O3 -fla +5.9 +7.2 +5.9 +4.6 NA NA NA NA

For this enhancement evaluation, PalmTree (HBMP/GGNN) is used because it has much better accuracy comparing with that of PalmTree (mean/GGNN),
as shown in Table 16.

246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 1, JANUARY 2023

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 19,2023 at 13:11:59 UTC from IEEE Xplore.  Restrictions apply. 



this function. In other words, our solution for such external
callsites are alignedwith our optimization introduced in Sec-
tion 5.5. As mentioned in Section 5, path constraints are col-
lected along with the symbolic execution and used to form
the symbolic constraint. Nevertheless, if no path condition
can be constructed, we skip comparing this callsite.

9.2 Others

In addition to inconsistency of external callsites, we also list
some other issues that may undermine the analysis of
BinUSE. They are primarily due to the unsound memory
model of the angr and some corner cases raised by the
cross-architecture comparisons.

angr Unsound Memory Model. angr couples concrete
execution with symbolic execution to reduce the over-
head [76]. Before dereferencing a symbolic pointer, angr
would replace the symbolic memory address with a con-
crete address. This concolic design practical reduces the
burden of performing complex points-to analysis. Never-
theless, adopting an unsound memory model makes imple-
menting a sound BinUSE infeasible.

angr Tampering Global Memory Region. We also find that
when starting to perform BinUSE at the entry point of a
function, certain memory locations could have been some-
what initialized with concrete values. Those concrete val-
ues, when being used to compute branch conditions, can
enforce angr to take only one path instead of exploring all
feasible paths. As a result, angr can be impeded from find-
ing paths to certain external callsites. Neglecting external
callsites can lead to FNs as well.

IDA-Pro Failures. To compare a pair of assembly functions f
and f 0, we conduct USE and constraint solvingwhich is gener-
ally expensive. The implementation of BinUSE indeed adopts
a practical early-stop condition criteria: f and f 0will not be rig-
orously compared, in case theydo not share even one identical
external callee. Instead of using angr to collect external callees
during USE, For the current implementation, we use IDA-Pro
to statically disassemble binary code, reconstruct CFG, and
recursively collect external callsites of f and f 0. However, we
report that IDA-Promight sometimes throw reverse engineer-
ing failures and stop analyzing such functions, particularly for
highly optimized and obfuscated binary code samples (recall
we compile our test cases with full optimization and various
obfuscation methods). IDA-Pro failed to analyze about 1.0%
binary samples on all of our test cases; for these cases, we have
to rely on the predictions of DNN-based tools.

Cross-Architecture Challenges.Our evaluation involves some
cross-architecture settings, by comparing functions compiled
on one architecture with functions compiled on different
architectures. angr performs symbolic execution by first lift-
ing binary code into VEX, a RISC-like intermediate language.
While VEX itself is deemed “platform-independent,” we still
encountered a number of cross-architectural inconsistencies
impeding foolproof equivalence checking.

64-bit Registers versus 32-bit Registers. We find plenty of
cases, where a 64-bit register on x86 64-bit architectures are
represented by two 32-bit registers on x86 32-bit architec-
tures. When forming constraints for equivalence checking,
it becomes very obscure, if at all possible, to match the 64-
bit register with its corresponding two 32-bit registers.

64-bit Constant versus 32-bit Constant. We also find that
certain constants are changed in 32-bit and 64-bit machine
codes. For instance, a constant 0x55555554 in 32-bit x86
machine code is extended into 0x5555555555555554 in 64-bit
machine code. While this should not affect execution on
CPU, we note that such inconsistencies induce erroneous
results for symbolic execution and equivalence checking.

9.3 Failures of BinUSE

This section lists failures thrown by the underlying sym-
bolic engine and reverse engineering tools. As mentioned in
Section 8, these issues contribute to the failures of BinUSE
when analyzing coreutils binary code (on average 13.8%
cases failed; as reported in Table 7).

Symbolic Code Pointer. As aforementioned in Section 9.2,
angr implements a unsound memory model. When dere-
ferencing a symbolic pointer, angr replaces it with a con-
crete address. When performing symbolic execution, we
indeed observed a number of pointer deference failures
thrown by angr. With further investigation, we find that
before performing pointer dereference, certain symbolic
code pointers cannot be concretized into concrete addresses.
We have reported the issue to the angr developers. As
noted by the angr developers, this issue demends specific
concretizing strategy. Currently when encountering such
dereference failure, we have to skip analyzing this function.

Unsupported Instructions When analyzing certain binary
codes, angr may throw “unsupported instructions,” lead-
ing to the failure of analyzing this function. For instance,
angr failed to process x86 instruction pavgusb, which is a
commonly used instruction to optimize image and video
processing software like FFmpeg.

10 RELATED WORK

Section 3 has reviewed DNN-based binary code similarity
research and explored their limits. While recent DNN-based
approaches have shown decent support for difficult settings
like cross-optimization and cross-architecture [14], [15],
[16], [23], [77], our research proposes to use low-cost func-
tionality checking to compensate the inherent limitation of
DNN-based approaches further. We have also reviewed the
theory proving-based binary code equivalence checking in
Section 2.2, and compare BinUSE with SE-based and ran-
dom sampling-based binary code matching in Fig. 6.

Tracy [78] decomposes assembly functions into tracelets
for comparison. The extracted features, mostly on the syn-
tactic level, might suffer from cross optimization or cross
compiler comparison settings. Two follow-up works,
Esh [26] and GitZ [79], extract strands (i.e., data-flow slices
of basic blocks) for comparison. Both methods operate at
the boundaries of a basic block. Some challenging settings
which break the integrity of basic blocks may reduce the
accuracy of these two methods. GitZ lifts binary code into
VEX IR, and then converts the lifted VEX IR into LLVM IR
for analysis. However, their VEX to LLVM converter is not
available for use or comparison.

Some conventional techniques leverage program syntac-
tic features for similarity analysis, such as distributions of
instructions, opcodes, system calls, or some control-flow
graph-level features [9], [71], [80], [81], [82]. BinDiff, as
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the industrial standard tool, identifies similar code compo-
nents through graph isomorphism comparison [71]. It has
been pointed out that BinDiff is not robust toward obfus-
cation methods such as control flow flattening which largely
changes the control flow structures [14], [31].

Several works leverage dynamic analysis or random input
sampling for similarity analysis [83], [84], [85], [86], [87], [88],
[89]. However, as compared in Fig. 6, a prominent issue is the
low coverage of test targets (e.g., functions), rendering it gen-
erally unsuitable for production scenarios. Section 4 has clari-
fied that while random sampling can be used to promptly
generate input-output relations of two executables for com-
parison, they might exhibit potentially low completeness and
result in FPs [21], [27], [30], [31], [32]. Recent works [90], by
enhancing I/O features with structural features and high-
level semantics features, manifest much better empirical
results and outperform static tools like BinDiff and Tracy.

11 CONCLUSION AND FUTURE WORKS

This paper identifies common limitations in DNN-based
binary code search and proposes to enhance DNN models
with low-cost equivalence checking. In particular, we design
BinUSE, a practical static analysis framework on the basis of
under-constrained symbolic execution (USE) to check the
equivalence of assembly functions. BinUSE incorporates a
variety of optimizations to alleviate overhead incurred by
path explosion and costly constraints. This way, BinUSE can
be used to flag and shave assembly functions with semantic
deviations comparedwith the target function, thus effectively
enhancing the accuracy of DNN-based binary codematching.
Our empirical results show that the proposed approach ena-
bles a general and highly effective improvement of cutting-
edge DNN models in this field, making assembly function
search more practical in production. We demonstrate the
capability of BinUSE by matching programs from the Linux
coreutils and binutils test suites, as well as the feasibil-
ity of largely augmenting vulnerable function search over
complex real-world software such as OpenSSL, Wireshark,
and FFmpeg.

As aforementioned, we have released the source code of
BinUSE and evaluation data for reproducibility at [22]. In
the future, wewill maintain BinUSE to benefit research com-
parison and extension. On the basis of BinUSE, we envision
many downstream applicationsmay be explored and further
developed. For instance, Section 8.7 has clarified that in addi-
tion to launching BinUSE to reorder only top-K matched
functions, BinUSE can be used to verify each individual
decision made by DNN: we first use recent advances in XAI
techniques (e.g., neural attention) to scope critical code frag-
ments contributing to the decision of DNN-based binary
code matching, and then use BinUSE to verify the semantics
equivalence of those scoped code fragments (which are usu-
allymuch smaller than entire assembly functions).

Along with the vulnerable function search demonstrated
in this paper, we intend to integrate BinUSE with de facto
DNN-based binary matching to expedite the search for
unknown vulnerabilities in real-world closed-source (com-
mercial) software. BinUSE contains a high engineering
effort directed at developing a cross-architecture solution
capable of analyzing binary executables on both x86 and

ARM (aarch64) platforms. With the proliferation of legacy
software and third-party libraries on embedded and Inter-
net of Things (IoT) devices, it is anticipated that BinUSE’s
cross-architecture, cross-compiler, and obfuscation-resistant
binary code search capabilities will accelerate the process of
matching vulnerable executable files.
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