N)
s BinAug: Enhancing Binary Similarity Analysis with Low-Cost

Input Repairing

Wai Kin Wong Huaijin Wang" Zongjie Li Shuai Wang*
The Hong Kong University The Hong Kong University = The Hong Kong University = The Hong Kong University

of Science and Technology of Science and Technology of Science and Technology of Science and Technology
Hong Kong SAR Hong Kong SAR
wkwongal@cse.ust.hk hwangdz@cse.ust.hk

ABSTRACT

Binary code similarity analysis (BCSA) is a fundamental building
block for various software security, reverse engineering, and re-
engineering applications. Existing research has applied deep neural
networks (DNNs) to measure the similarity between binary code,
following the major breakthrough of DNNs in processing media
data like images. Despite the encouraging results of DNN-based
BCSA, it is however not widely deployed in the industry due to the
instability and the black-box nature of DNNs.

In this work, we first launch an extensive study over the state-
of-the-art (SoTA) BCSA tools, and investigate their erroneous pre-
dictions from both quantitative and qualitative perspectives. Then,
we accordingly design a low-cost and generic framework, namely
BINAUG, to improve the accuracy of BCSA tools by repairing their in-
put binary codes. Aligned with the typical workflow of DNN-based
BCSA, BINAUG obtains the sorted top-K results of code similarity,
and then re-ranks the results using a set of carefully-designed trans-
formations. BINAUG supports both black- and white-box settings,
depending on the accessibility of the DNN model internals. Our
experimental results show that BINAUG can constantly improve per-
formance of the SoTA BCSA tools by an average of 2.38pt and 6.46pt
in the black- and the white-box settings. Moreover, with BINAUG,
we enhance the F1 score of binary software component analysis,
an important downstream application of BCSA, by an average of
5.43pt and 7.45pt in the black- and the white-box settings.

CCS CONCEPTS

« Security and privacy — Software reverse engineering; «
Theory of computation — Machine learning theory.

KEYWORDS
Binary analysis, DNNs, Input repairing

ACM Reference Format:
Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang. 2024. BinAug:
Enhancing Binary Similarity Analysis with Low-Cost Input Repairing. In

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE 2024, April 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04...$15.00
https://doi.org/10.1145/3597503.3623328

Hong Kong SAR
zligo@cse.ust.hk

Hong Kong SAR
shuaiw@cse.ust.hk

2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE
'24), April 14-20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3623328

1 INTRODUCTION

Binary code similarity analysis (BCSA) compares two or more pieces
of binary code and decides their similarity. As a fundamental anal-
ysis capability, it has been actively employed in a wide spectrum
of real-world software (re-)engineering and security applications,
including malware clustering [13, 41], malware detection [21, 32],
vulnerability mining [28, 54, 62, 96, 106], license violation detec-
tion [38], code plagiarism detection [58], and software composition
analysis [74, 98].

Establishing well-performing BCSA frameworks is challenging,
as binary code is generally more obscure than source code. Various
analysis-friendly features, e.g., variable names and symbols, no
longer exist in the binary code after compilation. Even worse, mod-
ern compilers often employ numerous optimization passes during
the compilation [1], “diversifying” possible binary codes originated
from the same source code and making it even harder to understand
and match binary code. For example, as an essential optimization
pass, function inlining replaces a function call site with the body
of its caller function. Such an optimization pass helps to reduce the
overhead of procedure call, at the cost of complicating the derived
binary code components. As noted in existing work [97], the detec-
tion rates for malware can significantly decrease when malware
samples are compiled with non-default optimization settings.

To tackle BCSA, heuristic-based, graph isomorphism approach
has been widely adopted in the industry [10]. Techniques based on
dynamic or symbolic analysis [24, 25, 34] have also been applied.
Holistically speaking, these techniques suffer from either low accu-
racy (e.g., using primarily syntactical features for comparison) or
high cost (e.g., requiring launching symbolic execution of the assem-
bly code). Recently, following the major success of deep learning
and particularly representation learning, well-trained deep neural
networks (DNNs) are employed in BCSA, and they have shown
promising results by automatically discovering the representations
needed for accurate and scalable BCSA from raw binary code or
assembly instructions [14, 28, 29, 35, 37, 50, 62, 82, 96, 99, 100].

Despite the prosperous development, such DNN-based methods
are imperfect, as they may face the inherent robustness issue. In
particular, a small perturbation in the input binary code may cause
a notable change in the latent representation learned by DNNs.
Also, performance of DNN-based BSCA is often influenced by the
DNN model architectures. For example, graph neural networks

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3623328&domain=pdf&date_stamp=2024-02-06

ICSE 2024, April 2024, Lisbon, Portugal

(GNNs), a popular DNN paradigm widely-used in software engi-
neering tasks [49, 110], are frequently affected due to the problem
of over-smoothing (see details in Sec. 3), reducing the expressive-
ness and utility of the computed node embeddings. This happens
because the so-called message passing phase in training a GNN
model aggregates neighboring nodes and causes their representa-
tions to converge to similar vectors. Our preliminary observation
(see details in Sec. 3) shows that this impedes GNN-based BCSA
from precisely matching similar binary codes. Moreover, the out-of-
distribution (OOD) issue can also adversely affect the performance
of BCSA. The performance of DNNs heavily relies on the training
data [91]. However, binary code with largely different represen-
tations may be generated from the same source code due to the
varying combinations of possible compilers, optimization passes,
and compilation toolchain versions. The significantly diversified
binary codes result in the inherent OOD issue, which is hard to
address by existing DNN-based BCSA methods.

To tackle the challenges in BCSA mentioned above, the intu-
ition is to detect failure-inducing DNN inputs with various DNN
testing methods proposed in the SE community [60, 67, 93]. Then,
with the located failure-inducing inputs, one may explore offline
adversarial re-training or data augmentation techniques proposed
by the AI community so that the employed BCSA DNN models
can generalize better. However, we argue that offline re-training
is time-consuming and often requires expensive hardware. The
model providers may thus run into an endless loop: they have to
keep adding the failure-inducing inputs, but the cumulative cost
may be unaffordable. Moreover, the enhanced DNN models are still
constrained by the additional data, whereas real-world inputs are
unpredictable in the wild. While in information retrieval, a similar
problem has been studied [69, 72, 109], our tentative study shows
that tactics used for enhancing DNN-based image re-trivial results
will induce false positives towards BCSA, as they are designed for
different objectives.

In this research, we aim to enhance the performance of BCSA
without conducting expensive offline re-training/tuning. Instead,
we propose a lightweight framework, BINAUG, to automatically
repair real-world BCSA inputs so that the employed DNN models
can perform better. This is challenging, as without ground truth, it
is unclear if an input, often in the form of assembly functions, is
failure-inducing or not. To this end, we first manually examine a
substantial number of failure-inducing inputs yielded by the state-
of-the-art (SoTA) models, and summarize a set of failure patterns.
Based on the empirical observations, we then introduce BINAUG, a
framework to automatically repair binary code inputs into more
analysis-friendly ones with a set of lightweight transformations.
We consider both black-box and white-box scenarios, where for the
white-box cases, we assume the availability of DNN model inter-
nals and intermediate representations to guide the repairing. Our
evaluation shows that BINAUG can effectively correct the potential
failure-inducing inputs and offers a general improvement, by an
average of 2.38pt and 6.46pt in the black-box and white-box sce-
narios, across eight SOTA BCSA models. Moreover, BINAUG boosts
real-world BCSA applications, with an average of 1.72pt and 5.62pt
for black-box and white-box settings of function clone search. BIN-
AUG also improves the F1 scores of binary software component

Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang

analysis, an important downstream application of BCSA, by an av-

erage of 5.43pt and 7.45pt in the black-box and white-box settings,

respectively. In sum, we make the following contributions:

e We advocate a novel viewpoint of enhancing DNN-based BCSA
through input repairing, which is lightweight and does not re-
quire offline re-training, fine-tuning, or data augmentation.

e With manually summarized failure patterns, we propose an input
repairing framework, BINAUG, which features a set of lightweight
transformations and DNN-aware procedures that are applicable
to both black-box and white-box scenarios.

e BINAUG consistently improves the performance of eight SoTA
BCSA models with modest overhead (less than 0.07 seconds per
input). It also notably boosts critical downstream applications.
Our artifact (e.g., the codebase of BINAUG) is at [3].

2 BACKGROUND

DNN-Based BCSA. In this research, we take a common BCSA
setting [82], such that the comparison unit is binary code functions.
That is, given a piece of binary code composing multiple functions,
BCSA performs pair-wise comparisons to iteratively compare each
binary function in the input binary against a database of binary
functions. This way, BCSA can be formally defined as an informa-
tion retrieval system for binary functions, such that given a query
function fq and a database of functions P, BCSA retrieves the top-K
functions {fi, f2, .., fx|fi € P} ranked by the similarity scores.

The major challenge of BCSA is introduced by the compila-
tion process. It produces unreadable machine code, discards types,
and variable names, and optimizes the structures like control flow
graphs (CFGs). Thus, a line of BCSA research extracts semantic
features for accurate similarity comparison. Conventional works
like [19, 31, 58, 80, 86] use program static/dynamic analysis tech-
niques to extract semantic features like input-output relations or
symbolic expressions. These methods, despite their accuracy, gener-
ally suffer from high overhead and are not widely used in practice.

Research success in deep learning, particularly in representa-
tion learning [15], has inspired a line of BCSA works with largely
enhanced performance [28, 29, 35, 50, 62, 82, 96, 99, 100]. In short,
deep-learning techniques facilitate transforming high-dimensional
data into lower-dimensional representations, which are often re-
ferred to as “embedding vectors” in a latent space. This way, match-
ing complex high-dimensional data can be reduced to computing
their “distance” in the latent space.

The pipeline of DNN-based BCSA is largely inspired by the
contemporary research in natural language processing (NLP). High-
levelly speaking, a query binary function fg is viewed as a sequence
of instructions, where BCSA treats instructions and instruction
sequences as words and sentences for representation learning and
matching [28, 35, 62, 82, 96, 99, 100]. Fig. 1 presents a common
pipeline. ©® Given an executable, BCSA first disassembles the input
into assembly instructions and further recovers the function-level
CFG. @ Then, the instruction sequence of each basic block in the
query function is treated as a sentence. Instruction embeddings are
produced by word embedding techniques like Word2vec [64], and
block embeddings are produced with pooling layers or recurrent
neural networks (RNN) like HBMP [73]. ® Since each binary func-
tion is structured, recent works [96, 99, 100] frequently use graph

BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing

push rbp [0.2,....9] IS
push rax 'I /\ >
@ 'l ret S
[2:4,...0] [8,1,....1]
instruction CFG CFG with block function
sequence embeddings embedding

Figure 1: The common pipeline of DNN-based BCSA.

neural networks (GNN) to compute the query function’s embed-
ding vector directly over its CFG. In comparison to earlier works
(e.g., SAFE [62]) which treat a binary function merely as an instruc-
tion sequence (i.e., a whole block) and ignore its CFG structure,
GNN-enhanced works often achieve notably better accuracy. Last,
to decide the similarity between the query function and a function
in the database, algorithms like cosine distance are used over their
embedding vectors (omitted in Fig. 1).

Performance Degradation of DNN-based Applications. While
no existing works have systematically studied and repaired the per-
formance degradation of DNN-based BCSA, we introduce several
key issues that generally impede DNN-based applications.

Distribution shifting. The performance of DNN-based applications

likely drops when inputs are out of the model training set’s distri-
bution. This is often referred to as out-of-distribution (OOD). Note
that it is a common challenge when integrating DNN in real-world
applications. In particular, our preliminary observation has shown
that in the context of DNN-based BCSA, inputs can be built with
different compilers, linkers, and optimization settings, resulting
in detection failures. To cope with this challenge, one may have
to frequently re-train the employed DNN models with new input
samples. However, such an approach requires a huge effort, and
real-world inputs are generally unpredictable [92].

GNN Specific Issues. GNN exhibits highly encouraging performance

to learn structural data [57, 61]. GNN is extensively employed in pro-
gram analysis applications, including BCSA. Nevertheless, GNNs
are hard to train and prone to under-reaching, over-smoothing, or
over-squashing problems. Under-reaching is a typical GNN hurdle
induced by the number of layers K in a GNN network. This hyper-
parameter K has limited the number of hops reachable from any
node in the graph through message passing. Thus, any nodes in the
graph cannot be aware of nodes that are farther away than K hops.
While increasing the number of propagation layers can resolve the
under-reaching problem, it may cause the over-smoothing problem,
which arises due to how GNNss are trained [11]. During training,
GNN updates node representations by aggregating themselves and
their neighbors’ representations through message passing. When
the number of iterations for message passing is sufficiently large, the
neighbor aggregation strategy likely smooths node representations
over a graph, causing them to converge to similar vectors. Moreover,
Over-squashing is another inherent problem for GNNs. It happens
when the input exhibit specific topological properties [11, 76]. As
a result, the model performs poorly when handling such kind of
inputs, which usually involves long-range interaction.

Input Repairing. With the usage of DNNs in various fields, there
is a growing interest in detecting and repairing failure-inducing

ICSE 2024, April 2024, Lisbon, Portugal

inputs. For example, with the help of triplet loss [71], Xiao et al. [92]
propose to automatically recognize unexpected image inputs, which
are mapped to similar yet more regulated samples in the training
data. Besides repairing images, DietCodeBert [107] is designed over
source code inputs, and it uses auxiliary models to identify source
code pieces with critical semantics. Li et al. [53] leverage a black-box
majority voting phase to repair outputs of code completion models.
Compared with offline model re-training or fine-tuning, online de-
tection and repairing of failure-inducing inputs offer several advan-
tages. First, it reduces the burden and cost of re-training/fine-tuning
when the underlying DNN models are already in use. Moreover,
model re-training/fine-tuning is infeasible for various scenarios;
for instance, the model or original training data is not accessible,
or no proper devices (e.g., GPUs) are available for re-training. In
contrast, input repairing can be performed on the fly, and it does
not require the model or training data. Moreover, even if the model
is accessible and re-trainable, we anticipate that input repairing can
offer orthogonal and likely synergistic improvement. This work,
for the first time, presents an effective and tailored input repairing
framework for BCSA and its enabled downstream applications. See
further comparison with relevant works in Sec. 4.

3 PRELIMINARY STUDY

To explore the failure patterns of de facto DNN-based BCSA, we
manually examine the matching results of three SOTA BCSA models
and analyze all the failure cases.! We select two evaluated and well-
performing BCSA tools from a recent survey [61]: SAFE [62] and
GNN-Talos [51, 61]. 2 As noted in Sec. 2, GNN-Talos leverages GNN
to take CFG-level embedding into account, whereas the earlier work,
SAFE, treats a binary function as a sentence. We also evaluated a
commercial BCSA tool (name blinded) using GNN.

We evaluate these three BCSA tools using FFmpeg, a popular
open-source multimedia framework. We perform cross-optimization
BCSA, where the 23,705 binary functions in FFmpeg are split into a
query set (9,397 functions) and a target set (14,308 functions) stored
in the database. In short, while each tool exhibits reasonable BCSA
performance in this setting, they make mistakes from time to time.
At this step, we randomly pick 200 failure samples made by each
BCSA tool and discuss their failure patterns as follows.

3.1 Failure Patterns of SAFE

Technically, SAFE is an RNN-based BCSA model which treats as-
sembly functions as sentences and uses a self-attentive sentence
encoder to learn the function representation. After manually re-
viewing the failure instances from SAFE, we discover that attention
overfitting is the major cause of failures for the SAFE model. We no-
tice that the model frequently focuses on the function prologues and
also stack-relative instructions. In fact, about 50% of the failure in-
stances gain the most significant attention at their first basic blocks,
incorrectly resulting in high similarities between query functions
and the functions with similar prologues in the database. In general,
we observe that most failure instances are due to incorrect attention
over various mundane instructions (e.g., stack operations) in an

! A matching failure occurs when the function with the highest similarity score (top-1
matching) is wrong.
2We denote GNN in Marcelli et al. as GNN-Talos.

ICSE 2024, April 2024, Lisbon, Portugal

Significant differences in CFG

0,
10% 22%
Matching result is related function
4% 14% Complex structure
0
Others

Figure 2: Failure pattern distribution.

assembly function. To clarify, while detecting similar functions on
the basis of prologues is a common heuristic for writing function
signatures and Yara rules [9, 16], these rules usually employs other
global features like strings to reduce false positive matches. How-
ever, the attention mechanism of SAFE falsely and merely focuses
on those mundane routines like the function prologues.

3.2 Failure Patterns of GNN-Based Techniques

By manually analyzing the failure instances of two GNN-based tools
(GNN-Talos and the commercial tool), we identify three common
failure patterns as following. Due to the limited space, we leave
samples of each pattern on our webpage [7] for reference, and we
report the distribution of failure patterns in Fig. 2.

@ Significant differences in CFGs: If the graph structures between

the query function and the ground truth are vastly different, GNN
often prioritizes the graph structure over the node attributes, even
if they are similar at the instruction level (i.e., node attributes),
resulting in failures. We categorize an assembly function and its
ground truth as pattern @ if one’s CFG has 1.5 times more nodes
than the other. As expected, compiler optimizations like function
inlining are major root causes of such failures.

@ Functions with similar CFGs: Some functions with similar CFGs
and functionality gain greater scores than the correct match oc-
casionally, such as those utility functions (e.g., cbs_h265_write_-
sei_buffering_period and cbs_h265_write_sei_pic_timing)
with similar functionality and only slight difference. As a heuristic,
we identify those functions by measuring if their names’ common
subsequence is over 50%.

® Complex structure: The majority of failure cases fall in this cate-

gory. In short, functions may have complex CFGs and long-range
distances between nodes on the CFG. Such complex structures
would presumably result in the inherent problems of GNNs, in-
cluding under-reaching, over-squashing, and over-smoothing (as
introduced in Sec. 3). For instance, basic blocks containing the re-
turn instructions often have extremely long distances from the
entry block of the function, resulting in the under-reaching and
over-squashing issues.

@ Others: Some failure patterns are hard to generalize. For example,
the CFG of a query function is relatively simple yet matched to a
function with a vastly different CFG. This is hard to interpret on
our end, given that explaining DNN model predictions is still an
open problem. We refer to these types of issues as Others.

Explanation. As shown in Fig. 2, ® and @ are the two major fail-
ure patterns for GNN-based BCSA models. To efficiently generate
embedding vectors, GNN-based approaches often limit the steps

Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang

for message passing. Therefore, the node information cannot prop-
agate thoroughly when a function’s CFG is complex, resulting in
low-quality embedding due to the under-reaching problem men-
tioned in Sec. 2. By analyzing the topology, we observe that cases
belonging to pattern ® usually have long distance between basic
blocks, resulting in under-reaching and over-squashing problems.
Some GNN-based BCSA models increase the number of layers for
message passing to avoid under-reaching, but they in turn likely
suffer from the over-smoothing issue [11].

4 FRAMEWORK DESIGN

Following the empirical observations in Sec. 3, we design BINaUG,
a BCSA input repairing framework that improves the accuracy of
DNN-based BCSA solutions. Given a query binary function, BINAUG
aims to provide a lightweight approach to re-ranking the top-K
results returned from a DNN-based BCSA tool.?

Limitations of Existing Works. As already reviewed in Sec. 2,
recent works, InputReflector and CCTest, launch input repairing
to improve the performance of DNN-based applications. However,
InputReflector is specifically designed for image classification, while
BCSA mainly relies on the expressiveness of code embeddings
yielded by DNN models. CCTest improves the results of the code
completion system through source code transformations, which
are unsuitable for BCSA since CCTest’s transformation candidates
(e.g., variable names) are unavailable in binary code. Also, result
re-ranking methods are often tailored for information retrieval
systems and are not applicable to the BCSA scenario [20, 66].

Framework Overview. BINAUG subsumes two variants of input
repairing methods, based on whether the BCSA embedding model
is accessible or not. The white-box setting is applicable when the
embedding model internal, including its structure and parameters,
is accessible. In contrast, users can merely access the embedding
vectors in the black-box setting. For both white-box and black-box
settings, the query binary and the database being queried (i.e., P of
Sec. 2 but not the training dataset of the BCSA model) are always
accessible. This setting is reasonable and aligned with typical usage
scenarios where users upload a query binary through API to a
remote BCSA service and receive the top-K matched functions.

Following the standard practice, the BCSA first provides the top-
K most similar functions in the function pool P for a query binary
function fg. With the initial matching results, BINAUG re-ranks the
results by calculating ReRank(fy, pi) between the query function
and the i-th ranked function as follows:

ReRank(fq:Pi) =(1- a)Sim(f;pPi) + aSimaug(ﬁpPi) (1)
where ReRank(fg, p;) (Eq. 1) is defined as the linear combination be-
tween the original similarity score (Sim(fg, p;)) and the augmented
similarity score Simayg(fg, pi)- We elaborate on computing the aug-
mented similarity scores for both white-box and black-box settings
in Sec. 4.1 and Sec. 4.2, respectively. Our exploration (see details in
Sec. 6.6) across multiple SOTA BCSA models shows that the optimal
values for « ranges from 0.4 to 0.6. We thus recommend setting
a = 0.5 for general use.

30ur evaluation shows that for SOTA BCSA models, configuring K = 10 usually offers
a good balance between enhanced accuracy and incurred cost; see details in Sec. 6.6.

BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing

4.1 White-box Input Repairing

Attention-Based BCSA Models. When BCSA models employ the
standard attention mechanism [77], we classify it as an attention-
based model. As aforementioned, modern BCSA solutions often
treat binary code (e.g., assembly basic blocks or instruction se-
quences) as natural language sentences and apply the attention
mechanism to learn the semantic similarity. In other words, attention-
based models are common in contemporary BCSA works, e.g., SAFE
which is evaluated in this work.

As uncovered in Sec. 3.1, models with attention layers often
falsely focus on a function’s prologue and other stack-related in-
structions. However, those instructions are generally mundane, and
they do not necessarily encode meaningful semantics of a function.
This results in the overfitting problem of attention-based models.

To alleviate the overfitting issue, we propose a novel mutation to
generate new embeddings for a pair of functions under comparison.
Given two assembly functions f; and f; and an attention-based
BCSA model, we first apply the longest common subsequence (LCS)
to obtain an instruction sequence I = [iy,iy,...,i,] that is com-
monly focused (i.e., each instruction is associated with a high atten-
tion score; we set the threshold as 0.1 as most attention scores are
in the range of 107* to 107'2) in f; and f; by the attention model.
Next, we mutate the original instruction sequence by masking an in-
struction ij € I and collect the embedding vector over the mutated
input from the BCSA model. To “mask” i}, since there is no token
for masking of the original model, we replace its instruction with
the NOP instruction which does nothing during execution. After
iteratively mutating every i € I, we collect embeddings over all
mutations. Then, we average the mutated embeddings of fi (as well
as that of f3).* We then use the new embeddings for re-ranking.

Instead of iteratively masking every i € I, one may wonder
about the feasibility of masking all instructions of I at a time. Al-
though technically feasible, masking all instructions of I results in
meaningless instruction sequences and low-quality embeddings,
while masking one instruction each time introduces small and ac-
ceptable noises. Intuitively, this method generalizes the inputs and
thus mitigates overfitting. And since every attended instruction is
removed once for the following comparison, we expect to alleviate
its influence and force the attention-based BCSA model to focus on
uncommon instructions in f; and f; when generating embeddings.

GNN-Based Models. Instead simply treating the assembly instruc-
tions as a sequence of tokens, recent works have shown that the
structure information of assembly programs can be largely benefi-
cial for more accurate BCSA. Thus, the mainstream of recent BCSA
tools leverages GNNs to capture program structural-level informa-
tion. We denote them as GNN-based BCSA models. In particular,
all our evaluated SoTA BCSA tools, except SAFE, employ GNNs.
We observe that control-flow graph (CFG) is the most frequently-
used program structure [37] by GNNs. As shown in Fig. 1, af-
ter generating the node feature vectors with NLP techniques like
Word2vec [64], SoTA BCSA tools [28, 29, 50, 96, 100] employ GNNs
to produce function-level embeddings. Inspired by solutions to the
classic network alignment problem (also known as “graph match-
ing problem” [47]), we propose an GNN-specific input repairing

4To clarify, “averaging” is a basic and useful trick [2, 40] to compute the arithmetic
average of multiple embedding vectors in natural language processing.

ICSE 2024, April 2024, Lisbon, Portugal

° func,

[0,2,...,9] [0,2,....9] ° e
[2.4,...0] [81,...,11 [2.6,...9] [83....,10] o func,
CFG with block Nodes with

embeddings intermediate features

Figure 3: Illustrating GNN-based white-box repairing.

scheme. Overall, network alignment aims to match correspond-
ing nodes between graphs and has been widely-applied to social
network analysis [44, 56] and protein analysis [45]. Generally, a
network can be aligned on the basis of graph topology or node
features, or both features together. We focus on node features, since
over-smoothing is a problem that generally affects the expressive-
ness of node embeddings. Moreover, node alignment shall avoid
triggering the over-squashing and under-reaching problems, since
this procedure does not require the message passing phase. We
however assume that GNN has correctly captured the topological
information of the graph in most scenarios. This is because de facto
GNN architectures are at most powerful as the Weisfeiler-Lehman
algorithm [87], which is a computationally efficient heuristic to
perform graph isomorphism tests [12], as shown by Xu et al [94].
Most SoTA GNN designs go beyond this baseline [88] and well
captures the topology of the graph.

To ease presentation, we name our white-box, GNN-specific in-
put repairing method as Hungarian algorithm (HA). Fig. 3 presents
the pipeline of HA. After initializing basic blocks’ embeddings (as
shown in Fig. 1), we first perform @ an iteration of message passing.
This way, we ensure that the intermediate feature of each node cap-
tures the information of its neighbors, whereas the limited iteration
(only one iteration) eliminates over-smoothing. Next, we employ @
the standard Hungarian algorithm [5] to compute the optimal node
alignment of two matched functions. Last, the repaired similarity
(ie., Simqyg, ,) is computed by @ averaging the cosine similarities
between the matched nodes.

4.2 Black-box Input Repairing

Motivation. In black-box scenarios, we can only access the top-K
matched functions and the associated scores to quantify the similar-
ity between each top-K function and the query function. Although
white-box methods are not applicable, we aim to propose methods
to repair the query input and overcome hurdles in BCSA. Recall in
Sec. 3.2, failure patterns @ and @ (the two major failure patterns)
primarily root from the overly complex and vastly different inputs.
The intuition is that if we “regulate” the CFG with a set of transfor-
mations, we may likely make visually distinct CFGs more similar.
More importantly, if we can properly increase node connectivity,
we enhance the message passing between nodes, improve the ex-
pressiveness of the node embeddings, and inherently alleviate the
challenge imposed by complex and largely different CFGs.

Overview. We propose three transformations directly over the
query functions. Inspired by graph rewiring [76] and graph aug-
mentation methods [27, 108], we design all three transformations
over the query function CFG. In general, these methods “regulate”

ICSE 2024, April 2024, Lisbon, Portugal

(a) Original (b) Partial wheel graph (c) Inserting subnodes (d) Control-flow flattening

Figure 4: Black-box graph transformations.

the structural representation of the query function and a database
function under comparison, thus eliminating the influence of poten-
tial OOD, enhancing the node connectivity, and presumably easing
the difficulty of comparing two functions originated from the same
source code. The derived new similarity score, Simgyg, ,, will be
used in Eq. 1 to update the final similarity score ReRankj . We
detail each method below, whose holistic view is shown in Fig. 4.

Partial Wheel Graph. We notice that a recent work [17] has mea-
sured the expressiveness of GNN using Dirichlet energy. In short,
it is shown that transforming graphs into a supernode structure is
equivalent to dropping edges, which can increase Dirichlet energy
and alleviate the issues exposed in our empirical observation.

With this regard, we transform the original CFG to a new graph
with a supernode. Specifically, we connect the first node (i.e., the
entry of a function) with all other basic blocks, forming a special
wheel-like structure. We present a case in Fig. 4(b) (transformed
from Fig. 4(a)), where the first basic block is the supernode.

Inserting Subnodes. Recall in Sec. 2, message passing is the critical
phase for encoding graphs. However, this process can be time-
consuming; thus, existing BCSA tools limit the steps for message
passing, resulting in the under-reaching problem when the CFG is
complex. To alleviate this problem, we propose to insert subnodes
(i-e., yellow nodes of Fig. 4(c)) between CFG nodes to enhance
the reachability of message passing compared to the original CFG.
Moreover, adding extra edges and supernodes are also profitable
means for solving over-squashing [11, 36, 70].

Control-Flow Flattening. This transformation is essentially de-
rived from software obfuscation methods [46], where the whole
CFG is transformed into a huge “switch-like” structure. Moreover,
it is noted that this transformation can be implemented as a combi-
nation of wheel transformation and subnode insertion. An example
is presented in Fig. 4(d). We first apply the wheel transformation
on the original CFG, then a new node that connects with all blocks
except the entry block is inserted. For the sake of simplicity, we
call the newly-inserted node as “dispatcher node”

5 EVALUATION SETUP

We implement BINAUG using PyTorch (ver. 1.13.0) and extract fea-
tures with IDA Pro [39], a commercial and popular reverse engineer-
ing tool [28, 29, 99, 100]. We use a Ryzen 3970X 32-core server with
256GB memory and a RTX 3090 GPU for experiments. The codebase
of BINAUG is available at [3] for research usage and extension.

Datasets. We reuse the two datasets of a previous BCSA study [61].
Dataset-1 is the training dataset that contains seven open-source
projects. We followed its building method and compiled binaries
with two compiler families (gcc and clang) and five optimization

Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang

options (i.e., 00-03 and Os). Dataset-2 consists of ten open-source
libraries and is also used by Trex [68]. Since Dataset-2 is compiled
with gcc only, we additionally extend the dataset by compiling
it with clang; thus, we can evaluate cross-compiler setting with
Dataset-2. We also adopt a common approach [28, 99, 100] to re-
moving simple functions (i.e., functions with less than five basic
blocks). At last, there are 490K and 424K functions of two datasets,
respectively. More details of the above two datasets are available
in [61]. Besides, we use FFmpeg compiled by gcc with different op-
timizations as our validation dataset; this validation dataset consists
of 23,705 functions (aligned with Sec. 3) to select the best model for
testing. Overall, all binaries in our experiment are selected from
real-world software in various domains, including mathematical
computing, data compression, data encryption, database, and so
on. We thus believe that our experiment is reasonably close to real-
world BCSA usage scenarios. And we ensure the accuracy of our
study and the credibility of our findings to a great extent.

Evaluation Targets. Marcelli et al. [61] study SOTA BCSA solutions
and demonstrate that GNN-based BCSA outperforms other solu-
tions in most situations. To evaluate the performance of BINAUG,
we also choose GNN-based works from [61], i.e., GNN-Talos [51],
GNN-Structure2vec [23], and CodeCMR/BinaryAlI [99, 100]. For
GNN-Structure2vec, we consider two works: Gemini [96], a pio-
neer of applying GNN to BCSA with manually-engineered node
features, and Structure2vec [63], producing feature vectors of basic
blocks with assembly code embeddings. CodeCMR [100] is a com-
mercial tool. We implement our own version with GGNN [52] and
Set2Set [79] pooling layer based on its paper (denoted as Set2set).
Additionally, we also include GAT [78], another SOTA GNN-based
approach.

For approaches without a GNN model, we evaluate SAFE [62], a
variant of the self-attentive sentence embedding model [55]. We also
include Asm2Vec [28] which produces function-level embeddings
using a PV-DM model [48], and takes into account the function CFG
using a random walk-based method. Since Asm2Vec is not based
on attention or GNN, we applied BiNauG’s black-box repairing
strategies on Asm2Vec. We have also included an anonymous, DNN-
based commercial BCSA solution available on the market to access
BiNAUG’s black-box methods in a real-world application scenario.

Two recent BCSA works [51, 82] are not evaluated due to their
inefficiency. In particular, GMN, a variant of GNN-Talos proposed by
Li et al. [51] does not generate function embeddings but computes
the similarity of a pair of functions with a neural network; thus, the
time cost for comparison becomes infeasible when the database to
be searched is large. We also exclude jTrans [82] since it uses a large
and expensive Bert model [26] to produce function embeddings.

Feature Extraction. As shown in the typical BCSA pipeline in
Fig. 1, we need to perform both assembly instruction embedding and
function-level embedding. Thus, besides deciding the target models
for generating function-level embeddings, we also need to embed
assembly code, except Gemini, which relies on manually-selected
features. We use PalmTree [50], the SoTA instruction embedding
framework, to embed assembly code for GNN-based models. Fol-
lowing the solution of CodeCMR [100], we train an end-to-end
HBMP [73] model to generate basic block embeddings. Then, GNNs
can be used to produce function-level embeddings.

BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing

For SAFE, our preliminary studies show that the Precision@1
performance and re-ranking performance of BINAUG is similar
when using either Word2vec or PalmTree as the instruction em-
beddings. Nevertheless, because of the performance overhead for
re-encoding the instruction embeddings with PalmTree, we de-
cide not to replace Word2vec with PalmTree. Asm2Vec uses a cus-
tomized PV-DM model to learn function-level embeddings with
self-supervised learning. It provides an API for use, and is treated
as black-box in our evaluation.

Training Setting. For the training setup, given the popularity
of the 64-bit x86 architecture, we use binary functions compiled
with gcc -00 for 64-bit x86 as the anchor throughout training.
Following a typical learning setting, we train the model until the
loss stabilized, and we select the best model for evaluation based on
results over our validation setting, i.e., performing search between
FFmpeg compiled with gcc -00 and gcc -03. For hyper-parameters
used in model training, we follow the configurations reported in
each tool’s paper or settings in the released code repositories.

Evaluation Metrics. We use Precision@K as the evaluation met-
ric. This is a standard metric for evaluating information retrieval
tasks, where a query function fg is correctly determined if the
ground truth is within the top-K retrieved functions. Following the
definition from Sec. 2, Precision@K is defined as follows:

Number of query’s correct match is within top-K @)
Total number of issued queries

Precision@K =

To deliver a comprehensive and challenging evaluation of BIN-
AUG, we set K = 1, the hardest setting for BCSA in our evaluations.

6 EVALUATION

Sec. 6.1 reports that BINAUG can enhance the accuracy of BCSA
tools regarding various challenging settings. Sec. 6.2 shows BiNauG
can improve critical real-world downstream applications of BCSA.
Sec. 6.3 reports the overhead of BINAUG, while Sec. 6.4 presents
further study over the effectiveness of BINAUG. Sec. 6.5 reports
combining black- and white-box methods, and we discuss the effect
of BINAUG’s hyper-parameters in Sec. 6.6.

6.1 BCSA Repair Performance

To evaluate the effectiveness of BINAUG, we use three settings
(X0, XO+XC, XO+XC+XB) from [61]. In particular, (1) XO denotes
a cross-optimization setting where BCSA searches similar func-
tions compiled with different compiler optimizations but the same
compiler; (2) XO+XC denotes searching functions compiled with
different optimizations and compilers; (3) XO+XC+XB is a more
challenging, cross-bitness setting as it additionally compares 32-bit
vs. 64-bit binaries. All three settings subsume typical scenarios of
BCSA. In Table 1, we present the averaged Precision@1 of BCSA
models, and their improvement after applying different repairing
methods of BINAUG, along with values of standard deviation. We
now discuss the results in detail.

White-Box Methods. As shown in Table 1, our white-box input re-
pairing strategies (i.e., LCS and Hungarian algorithm) successfully
improve the Precision@1 for all BCSA works across all three set-
tings. On average, the improvement of Hungarian algorithm (HA)

ICSE 2024, April 2024, Lisbon, Portugal

is 6.35pt. For GNN-based BCSA models with learned instruction em-
beddings, we observe a trend where the improvement is inversely
proportional to the original matching results. Nevertheless, BINAUG
can still bring considerable improvement for SOTA BCSA works as
their accuracies are far from the perfect. We present an in-depth
analysis in Sec. 6.4.

For SAFE, the attention-based model, BINAUG enhances the
Precision@1 by an average of 7.03pt. Unlike applying HA to GNN-
based models, BINAUG achieves constantly high improvement for
different settings. Having that said, BINAUG offers the least improve-
ment with the XO+XC+XB setting. Recall that the attention-based
repair relies on the LCS of two functions’ instruction sequences to
perform matching. However, there may be no common instructions
shared by two functions with different bitnesses since they have dif-
ferent instruction sets and registers (e.g., there is no 64-bit register
rbp in 32-bit binary code). See further discussion in Sec. 6.4.

Black-Box Methods. Although most black-box methods offer
general improvements, the best repair method of a specific model
may vary. For instance, inserting subnodes raises the Precision@1
of GNN-Talos model over 2pt across three comparison settings, but
it is not the best black-box repair for Set2Set. This phenomenon is
reasonable as a certain issue can have severer influence on a specific
model than another model. We interpret that over-squashing has a
considerable impact on GNN-Talos since shortening long distances
by inserting subnodes (IS) can consistently improve its Precision@1,
whereas over-smoothing is likely a significant issue of Set2Set as
partial wheel graph (PWG) and control-flow flattening (CFF) bring
higher improvement compared with inserting subnodes. Also, while
CFF offers the best black-box repairing for Set2Set, it achieves
negative improvement for the other models. We interpret this is
due to over-squashing; see further discussions in Sec. 6.4.

Compared with the improvement between BINAUG’s white- and
black-box methods, we can tell the white-box methods always
bring better performance. The overall improvement of white-box
methods (6.46pt) is nearly tripled than that of black-box methods
(2.38pt). This is reasonable, given that white-box repairing offers
more guided and DNN internal-aware enhancement. Having that
said, our white-box repairing methods are practically applicable
with moderate cost (see Sec. 6.3), and BINAUG users (in this case,
mainly the BCSA service providers) can employ them to improve
their results without expensive retraining or fine-tuning. Also, in
case only black-box methods are available, users, in this case mainly
the BCSA API users, can still leverage the lightweight black-box
methods to improve the results of the employed BCSA models.

Overall, the results suggest the effectiveness of BINAUG on re-
pairing BCSA results. For white-box scenarios, the HA manifests
the best performance. This illustrates the importance of considering
the intermediate node alignment, and also indicate the potential
of BINAUG in boosting other code similarity tasks on the basis of
GNNSs. As for black-box models, we observe that the best method
frequently differs depending on the specific models. In domain-
specific scenarios where only black-box methods are applicable, we
recommend users to first launch validation experiments to decide
the best repair method for their models.

ICSE 2024, April 2024, Lisbon, Portugal

Table 1: Averaged results of XO, XO+XC and XO+XC+XB. We
mark best black-box repair method .

Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang

Table 2: Averaged results of function database search. We
mark best black-box repair methods .

1. Setting abbreviations: Hungarian algorithm (HA), partial wheel graph (PWG), control-
flow flattening (CFF), inserting subnodes (IS), longest common subsequence (LCS).
2. The postfix W or B means the method is white- or black-box, respectively.

6.2 Enhancing Downstream Applications

We consider two representative tasks, function database search and
binary software component analysis (B-SCA).

Function Database Search. Following Sec. 6.1, we now evaluate
BINAUG in a function database search task. This task often supports
real-world applications of BCSA, such as code clone detection. We
create function pools with various sizes following the setting in [82]
and using functions of Dataset-2. Table 2 presents the results of the
function database search. We observe that both of our white-box
and black-box input repairing strategies exhibit similar behaviors
compared with the results in Table 1. This suggests that BINAUG’s
performance is consistent across different scenarios. It is reasonable
because the function database search (one to many search) deems
a nature extension of the pair-wise comparison (one to one search)
launched in Sec. 6.1. Overall, the results suggest that BINAUG is
effective in augmenting important applications like code clone
detection under different settings and for different models.

. X0 XO+XC XO+XC+XB Total . Poolsize
Model Setting Avg. [Stdev| Avg [Stdev| Avg |Stdev| Avg Model Setting 128 512 1000 10000
Precision@1| 63.36% 9.53 74.87% 7.42 73.59% 9.6 70.61% Precision@1 78.12% 63.36% 55.50% 23.34%
HA-W +6.84pt | 2.09 +6.37pt 1.69 +6.49pt | 2.35 +6.57pt HA-W +3.51pt +5.38pt +5.30pt +2.66pt
GNN-Talos PWG-B +2.38pt | 1.86 | -0.76pt 1.72 -0.42pt 1.77 | +0.40pt GNN-Talos PWG-B -0.58pt +1.58pt +1.47pt +0.88pt
CFF-B +1.37pt 1.85 -0.57pt 1.01 -0.31pt 1.14 +0.16pt CFF-B +0.39pt +1.11pt +1.08pt +0.45pt
IS-B +2.33pt 1.6 +2.03pt 1.06 +2.32pt 1.06 +2.23pt IS-B +1.43pt +2.52pt +1.87pt +1.07pt
Precision@1| 60.49% 8.94 70.32% 7.03 67.3% 12.83 66.0% Precision@1 74.09% 61.82% 52.68% 22.07%
HA-W +9.44pt | 2.16 | +10.53pt | 2.14 | +11.04pt | 4.1 +10.34pt HA-W +7.23pt +7.18pt +8pt +3.65pt
Structure2vec| PWG-B +3.1pt 1.26 | +4.49pt 1.97 +1.42pt | 0.52 +3.0pt Structure2vec| PWG-B +2.34pt +2.57pt +3.03pt +1.25pt
CFF-B 74pt | 274 | -1559pt | 404 | -1436pt | 237 | -12.45pt CFF-B ~6.05pt 7.91pt ~6.84pt 272pt
IS-B +0.57pt | 123 | +0dpt | 123 | +477pt | 146 | +1.91pt IS-B +1.24pt 10.34pt +0.67pt +0.48pt
Precision@1| 72.39% 8.95 84.89% 4.72 83.49% 6.0 80.25% Precision@1 83.53% 70.33% 63.03% 28.06%
HA-W +4.7pt 1.89 +2.74pt 133 +2.81pt 1.03 +3.41pt HA-W +2.86pt +4.36pt +4.07pt +2.13pt
Set2Set PWG-B +1.03pt 1.2 +0.09pt 1.16 +0.39pt 0.73 +0.50pt Set2Set PWG-B +0.78pt +1.17pt +0.85pt +0.62pt
CFF-B +1.54pt 13 +1.04pt 0.89 +0.98pt 1.2 +1.19pt
CFF-B +0.33pt +1.76pt +1.04pt +0.86pt
IS-B +0.86pt 1.25 +0.75pt 0.68 +0.79pt 0.76 +0.80pt
Precision@1| 59.26% | 891 | 69.28% | 743 | 67.03% | 1137] 65.19% IS-B +0.13pt +0.85pt +0.7pt +0.59pt
HAW | +7.55pt | 217 | +8.74pt | 151 | +84lpt | 231 | +8.23pt Precision@1| 74.61% 61.10% 51.58% 21.34%
GAT PWG-B -0.01pt | 0.03 | 0.0pt 0.0 0.0pt 0.0 | -0.003pt HA-W +5.01pt +5.88pt +6.33pt +3.0pt
CFF-B 5.04pt | 2.52 | -1338pt | 3.57 | -11.97pt | 4.09 | -10.13pt GAT PWG-B Opt Opt Opt Opt
IS-B +284pt | 14 | +3.92pt | 1.08 | +3.48pt | 1.88 | +3.4lpt CFF-B -6.32pt -4.82pt -3.9pt -1.07pt
Precision@1| 5354% |11.18| 4607% |1612| 42.25% |1520| 47.29% I5-B AL 22 24 L2
HA-W +2.93pt 2.58 +2.95pt 3.11 +3.77pt 5.60 +3.22pt Precision@1 62.87% 54.22% 45.52% 20.65%
Gemini PWG-B +0.28pt | 2.82 -1.46pt 3.08 -2.9pt 5.92 -1.36pt HA-W +3.21pt +3.11pt +4.20pt +4.30pt
CFF-B +056pt | 2.67 | +1.15pt | 269 | +0.66pt | 4.74 | +0.79pt Gemini PWG-B +0.08pt +0.22pt -0.06pt -0.14pt
IS-B -5.19pt | 4.09 | -4.19pt | 2.60 | -4.02pt | 6.00 | -4.47pt CFF-B +1.56pt +1.45pt +1.71pt +1.36pt
Precision@1 37.96% 7.86 26.53% 15.80 15.77% 14.37 26.75% IS-B -5.58pt -5.85pt -5.65pt -4.11pt
asmavec PWG-B +0.60pt 2.01 +0.24pt 2.41 +0.51pt 1.94 +0.45pt Precision@1 50.19% 43.49% 40.07% 31.55%
CFF-B +0.84pt 1.86 | +0.34pt | 2.14 | +0.20pt 1.96 +0.46pt PWG-B +2.23pt +1.47pt +1.36pt +1.84pt
IS-B +1.80pt | 2.11 +2.61pt | 2.57 +1.06pt 2.77 +1.82pt Asm2Vec CFF-B +2.72pt +1.40pt +1.37pt +1.69pt
Precision@1 70.30% 6.43 70.99% 6.55 62.03% 7.55 67.77%
Commercial | PWG-B | +1dépt | 149 | +032pt | 1.36 | +0.94pt | 158 | +0.91pt IS-B +245pt LK A +1.77pt
solution CFF-B +0.24pt | 1.80 | -0.28pt | 1.82 | +0.53pt | 1.37 | +0.16pt Precision@1 75.61% 66.40% 62.05% 33.98%
1SB +128pt | 100 | [+248pt | 109 | [+250pt | 1.03 | [+2.12pt Commercial | PWG-B Opt +0.13pt +0.2pt +0.83pt
SApp |Precision@1| 54267 | 897 | 37.85% |1189| 3747% |1201] 43.19% solution CII;;B gpt +0.10pt +0.26pt +087pt
LCS-W | +542pt | 3.00 | +13.18pt | 324 | +248pt | 275 | +7.03pt pt HLpt HUGE st
W +6.15pt - +7.41pt - +5.83pt - +6.46pt SAFE Precision@1 54.89% 43.00% 35.58% 14.32%
HA-W +6.29pt - +6.27pt - +6.50pt - +6.35pt LCS +7.49pt +6.71pt +5.83pt +1.94pt
LCS-W +5.42pt - +13.18pt - +2.48pt - +7.03pt Total w +4.89pt +5.43pt +5.62pt +2.46pt
Total B +1.95pt - +2.53pt - +2.66pt - +2.38pt B +1.53pt +1.80pt +1.72pt +1.27pt
PWG-B +1.26pt - +0.42pt - -0.01pt - +0.56pt 1. Setting abbreviations: Hungarian algorithm (HA), partial wheel graph (PWG), control-
CFF-B -1.13pt - -3.90pt - -3.47pt - -2.83pt flow flattening (CFF), inserting subnodes (IS), longest common subsequence (LCS).
IS-B +0.64pt - +1.14pt - +1.57pt - +1.12pt 2. The postfix W or B means the method is white- or black-box, respectively.

Binary Software Component Analysis (B-SCA). B-SCA [74, 98]
is a popular downstream application of BCSA in the security com-
munity. It involves analyzing arbitrary executable files to identify
potential Open Source Software (OSS) components reused in them.
This way, we are able to identify possible vulnerabilities propagat-
ing from upstream OSS components to the analyzed executable.
In short, B-SCA requires mapping each function in the executable
to the most similar function in the function database, and then
aggregates the results to generate a list of possible OSS compo-
nents. However, a large function database is required to provide
accurate results in a typical B-SCA setting, which can result in
precision issues due to similar modules across different libraries or
common control-flow structures shared by library utility functions
and others [74, 98].

We implement the B-SCA analysis pipeline based on the set-
ting in [90]. Given that the performance of similarity detection is
the key component for B-SCA, we use the two best BCSA models
(GNN-Talos and Set2Set) to support B-SCA. Accordingly, we use the
white-box repairing (Hungarian algorithm) and the best black-box
repairing methods (inserting subnode for GNN-Talos and control-
flow flattening for Set2Set) to uncover the potential “upper-bound”
improvement that can be offered by Binauc. We select 14 different

BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing

Table 3: Results of B-SCA before and after using BINaUG.

Model Setting Precision (%) | Recall (%) | F1 (%)
Default 19.9 284 234
GNN-Talos | BINAUG (white-box) 27.9 32.2 29.9
Binaug (black-box) 25.5 22.8 24.1
Default 31.6 42.2 36.1
Set2Set BINAUG (white-box) 45.9 43.1 445
BiNnauG (black-box) 40.9 46.6 43.6
Commercial Default 243 35.0 28.7
Binauc (black-box) 36.6 37.0 36.8

Table 4: Overhead of white-box repairing.

TOP-K 5 10 50 100
GNN-Talos | 2% | 3% | 13% | 23%
Set2Set 1% | 2% | 9% | 16%

binaries covering different functionalities (ranging from crypto-
graphic computation to database application) as the test inputs
for B-SCA analysis and identify their reused OSS components. We
create the function database with the latest version of 169 different
common OSS libraries. Full details of the setup are provided at [4].

Table 3 presents the encouraging results of B-SCA before and
after using BINAUG, which notably increases the F1 scores around
8pt, a frequently-used measurement for evaluating SCA works [74,
90, 98]. We notice that BINAUG brings significant improvement
(around 12pt) on the precision of B-SCA, resulting in the increases
of F1 scores. Our manual analysis reveals that BINAUG can reduce
many wrongly matched functions (i.e., false positive cases), result-
ing in the rises of precisions. For instance, mod_pagespeed is an
Apache module depending on 51 OSS libraries. After applying the
white-box repairing of BINAUG, the number of false positive cases is
reduced from 37 to 13. Overall, compared with black-box methods,
the white-box method can constantly achieve higher precisions and
F1 scores. This observation aligns with our findings in Sec. 6.1. Nev-
ertheless, BINAUG can still improve the Commercial BCSA tool’s
F1 score and precision for over 8pt and 12pt, respectively, with our
black-box (subnode insertion) method.

6.3 Cost of BINAUG

In this section, we assess the overhead of BINAUG. Given a query
function, Table 4 reports the overhead (as a fraction of total analysis
time) for white-box methods. We use 111,592 query functions from
the benchmark used in the B-SCA experiment of Sec. 6.2. For the
white-box settings, BINAUG brings 19.5% additional overhead on av-
erage, and we observe that the overhead of BINAUG is proportional
to the number of similar functions (K) considered; this is reasonable,
as given the top-K matched functions for a query function, Bin-
AUG launches K pair-wise comparisons, where in each comparison,
BiNAUG performs relatively expensive node alignment based on
the intermediate representations in BCSA. Having that said, the
absolute cost is still small: when K = 100, the total extra slowdown
is 6918.7 seconds, meaning that the average cost for repairing one
query function is only 0.062 (flgllgéé) seconds. When implement-
ing BINAUG, we carefully optimize the intermediate computations
(e.g., [8]), thus effectively reducing the overhead.

ICSE 2024, April 2024, Lisbon, Portugal

movaps [rsp+var88],xmmo
movaps [rsp+var78],xmml

movaps [rsp+var28],xmmé
movaps [rsp+varl8],xmm7

[]

(b) _bfd_error_handler

(a) elf_vxworks_finish_dynamic_entry

Figure 5: Illustration of mismatched function CFGs.

Despite the values of K in “top-K,” black-box methods take a
one-off effort to mutate the input function and generate the muta-
tion’s embedding. Then, re-ranking the top-K similar functions is
performed by computing K cosine distances among embedding
vectors of inputs and top-K functions. These steps are much faster
compared with node alignment required by the white-box method.
We omit the detailed results in Table 4 as the extra overhead is
negligible in our evaluations.

6.4 Successes and Failures of BINAUG

This section inspects the effectiveness of BINAUG in addressing
failure patterns observed in Sec. 3. To do so, for each BCSA model,
we analyze 40 randomly-picked success and failure cases for every
white-box and black-box setting, resulting in a total of 2,160 cases.’
We present the analysis results below.

Success: Attention-Based Models. As elaborated in Sec. 4.1, in-
tuitively, we mask stack operations to force the model focusing on
instructions conveying meaningful and hopefully distinguishable
functionality of a binary function. To confirm this, we randomly
study 40 success cases. Overall, in 90% of the instances, BINAUG
successfully forces the model to focus on instructions that have low
attention scores (under 10~%) before repairing, resulting in over
7% increases of Precision@1 in Table 2. Here, we report that our
experiment results support the design motivation in Sec. 4.1.

Success: GNN-Based Models. To quantify how BINAUG fixes the
error patterns observed in Sec. 3, we randomly pick and study 40
success cases when applying the Hungarian algorithm to each GNN-
based BCSA model. In total, 14.5% of the successfully repaired cases
belong to pattern @. One such case is in Fig. 5: when querying the
function database with function _bfd_error_handler (Fig. 5(b))
compiled with gcc -03, the initial top-matched result (Fig. 5(a)) is in-
correct. It is evident that the second block of _bfd_error_handler
is filled with SSE instructions, while the matched function has no
SSE instructions. Additionally, the control flow structure has signif-
icant differences. The incorrect match was due to over-smoothing,
where the expressiveness of the node embeddings has been low-
ered and becomes mostly indistinguishable. We observe that after
repairing, this incorrect matching is fixed with a much lower score.

5In line with Table 1, we have in total 27 black-box and white-box settings across all
models; thus, we analyze (40 +40) X 27 = 2160 cases in total.

ICSE 2024, April 2024, Lisbon, Portugal

For the complex structure (pattern ®) failures, we successfully
repair 73% cases, whose rationals are aligned with the above dis-
cussion. Moreover, we see that 4% of the cases belong to pattern
@ (“Others”), and the remaining 8.5% belong to pattern @. Over-
all, the distribution of successfully-repaired cases correlates to the
failure patterns observed in Sec. 3. This suggests that BINAUG can
effectively fix common hurdles faced by SoTA BCSA tools.

In sum, our GNN-based repairing approach is seen as effective to
align nodes in the CFGs. As discussed in Sec. 4.1, we perform node
alignment using the intermediate node representation. Compared to
the input node representation and the node representation extracted
from last layers of the network, the representation extracted from
the intermediate layer of the encoder has captured the network
topology with minimal effects from the over-smoothing problem.
Using the intermediate layer representation, we repair the results
through the averaged similarity of the matched nodes.

Success: Black-Box Methods. We examine randomly selected suc-
cess matches made by BCSA models after repairing. In short, 51%
of the successfully repaired case belongs to the complex structure
(pattern @), where 23.9% and 15% of the cases belong to patterns @
and ©, respectively. Overall, this trend matches with our expecta-
tion. Black-box repairing is design to regulate the input and provide
“shortcut” for message passing, hence reducing the challenges im-
posed by complex and unregulated input structures. Moreover, we
see that 9.6% of the cases belong to pattern @ (“Others”), among
which 59.2% of cases come from the commercial BCSA tool we
benchmark. We believe this could be due to the difference in fea-
tures used in the commercial tool, although it is obscure to confirm.

Failure: Attention-Based Models. Most failures are comparison
between binaries of different bitnesses (32-bit vs. 64-bit). As already
explained in Sec. 6.1, the different instruction sets result in BINAUG’s
failures; see further discussion and future work in Sec. 7.

Failure: GNN-Based Models. In BCSA models based on GNNs,
we find that BINAUG failures are due to the fact that true positive
matches are out of top-K. To solve this, we explore adjusting K by
setting it to larger values (15 and 20). Nevertheless, this introduces
minimal impact on BINAUG’s overall performance. Upon manual
inspection of these cases, we find that the function query could have
a significantly different graph topology than the correct answer. For
instance, the gcc-03 version of mp_mul_internal has 109 basic
blocks, while the function in the gcc-00 version only has 12 basic
blocks. We conclude that these cases belong to the pattern @ we
observed in Sec. 3.2, but it is generally difficult to solve.

Failure: Black-Box Methods. As shown in Table 1 and Table 2,
the performance of BCSA may decrease notably when applying the
control-flow flattening repair (except for the Set2Set case). With
manual exploration, we believe this is presumably due to over-
squashing. In short, control-flow flattening creates a bottleneck-like
structure between the function entry block and the newly-inserted
dispatcher node. As noted in previous work [76], this structure
might reduce the expressiveness of the GNN model and result in
performance degradation. While we believe that the Set2Set graph
pooling layer [79] explains why the Set2Set model can alleviate this
problem, exploring the root cause of this is hard, given explainable

Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang
Table 5: Evaluating the synergy effect of BiINnaua.

Model Settin X0 XO+XC XO+XC+XB
& Avg. |Stdev.| Avg. |Stdev.| Avg. [Stdev.
GNN-Talos Precision@1| 63.36% | 9.53 | 74.87% | 7.42 | 73.59% | 9.6

Synergy |+6.33pt| 2.55 | +5.69pt | 2.19 | +5.82pt | 2.06
Precision@1] 60.49% | 8.94 | 70.32% | 7.03 | 67.3% |12.83
Synergy |+9.44pt| 2.16 |+10.53pt| 2.14 |+10.38pt| 3.68
Precision@1|72.39% | 8.95 | 84.89% | 4.72 | 83.49% | 6.0

Structure2vec

Set2Set Synergy | +4.63pt| 2.03 | +2.47pt | 147 | +2.50pt | 1.45
GAT Precision@1] 59.26% | 8.91 | 69.28% | 7.43 | 67.03% | 11.37
Synergy |+7.36pt| 2.69 | +9.61pt | 1.79 | +8.02pt | 2.30
Gemini Precision@1] 53.54% | 11.18 | 46.07% | 16.12 | 42.25% | 15.20
Synergy |+2.45pt| 1.98 | +3.53pt | 1.87 | +3.92pt | 2.98
Average Synergy |+6.04pt| - +6.37pt B +6.13pt -
White-box |+6.15pt| - +7.41pt | - +5.83pt | -
Reference |) icbox |+2.08pt| - | +253pt| - |+244pt| -

Al is still an open problem. We leave it as future work for selecting
proper neural network architectures specifically for BCSA.

6.5 Combining Black- and White-Box Methods

This section explores the potential synergy effects of our proposed
black- and white-box repair methods. For each BCSA model, we
combine the best-performing black-box and white-box methods
according to the results in Sec. 6.1. Table 5 presents the result.
Overall, compared with the white-box method, we find that the
combination of white- and black-box methods can hardly further
improve the accuracy.

We believe that the effect of our black-box repair methods is
dominated by the white-box repair, which is intuitive. To explore
this “synergy effect,” we first transform the CFG of a query function
with black-box methods. Then, after generating nodes’ embeddings
and performing an iteration of message passing, we employ Hun-
garian algorithm (i.e., the white-box repair) for node alignment.
Recall that our black-box repair methods insert nodes and edges
but keep the instruction sequence of each basic block unchanged.
Hence, the initial representation of each node also remains un-
changed. After an iteration of message passing, subnode insertion
produces unchanged intermediate representations as it does not
modify original edges, while the other two black-box repair meth-
ods remove original edges, which cannot facilitate the follow-up
node alignment in the white-box method.

6.6 Hyper-Parameter Analysis

In the re-ranking process of BINAUG (Sec. 4), there are two hyper-
parameters, i.e., @ and K. « decides the contribution of the re-ranked
results to the final ranking, and K decides the number of results
being considered in top-K. For previous evaluations, the default
setting is « = 0.5 and K = 10. Here, we study different values of
a and K using the function database search application noted in
Sec. 6.2. Due to limited space, this section reports the key findings,
and the complete results are available on our webpage [6].
Specifically, we vary a from 0 to 1 and set K = 10; then, we
evaluate the changed Precision@1 of models after using BINAUG.
We report that BINAUG’s optimal improvements, for all models, is
achieved when a € [0.4,0.6]. Thus, we interpret that our current
setting, a = 0.5, is reasonably good. Moreover, when changing
K from 1 to 100, we record BINAUG’s performance. The values of
improved Precision@1 for all models rise fast when K < 10, but

BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing

they all saturate when K > 20. In this study, we set K = 10 to reach
a balance between overhead and accuracy.

7 DISCUSSION

Threats to Validity. One threat to the validity of our study is
whether BINAUG is applicable to other BCSA tools. To address this,
we have designed BINAUG, an input repairing tool, that is mostly
orthogonal to specific implementation details of BCSA tools. In
addition, we have evaluated the effectiveness of BINAUG across a
set of popular BCSA tools with varying details. This alleviates the
threat to generalization.

BINAUG is designed to improve the accuracy of BCSA and likely
benefits varying downstream applications of BCSA. In Sec. 6.2, we
assess the effectiveness of BINAUG’s performance in enhancing the
results of code clone detection and software component analysis.
Technically speaking, BINAUG can also be applied to other closely
related areas, such as vulnerability detection in binary code.

Another possible threat to the validity of our results is over-
specialization, meaning that our observations from the Sec. 3 may
only apply to specific benchmark configurations. To address this
concern, we use three non-overlapping datasets for conducting the
preliminary study, training BCSA models, and evaluating BINAUG.
This shall mitigate the risk and illustrate BINAUG’s generalization as
well. The effectiveness of BINAUG on those large-scale benchmarks
(each benchmark has over ten thousands cases, and in total we use
18 large open-source projects) indicates that our observations are
not limited to specific settings and is likely to generalize to varying
scenarios in the wild. We also study how different hyper-parameters
of BiNaug affect its performance in Sec. 6.6.

Future Work. As noted in Sec. 6.3, BINAUG introduces overhead
when it is required to mask instructions or generate many mutations
for repairing inputs. While the overhead is acceptable for most cases,
it may be prohibitive for large-scale usage. To alleviate this, one
may explore only repairing inputs whose top-K matching scores
are generally low or only repairing inputs with special patterns [95]
that are prone to matching failures. Second, as mentioned in Sec. 6.4,
the improvement of BINAUG significantly decreases when repairing
the cross-bitness matching of attention-based models. We envision
that lifting the binary code to a platform-independent intermediate
representation (IR) before using models is a potential solution. Also,
both BCSA tools and BINAUG heavily depend on the output quality
of the underlying binary reverse engineering and analysis platform.
If the binary executable is heavily obfuscated, de facto reverse
engineering tools may fail to recover the correct CFG or assembly
code, impeding BCSA tools and BINAUG.

8 RELATED WORK

Binary Similarity Analysis. Besides eight evaluated tools, there
are many other BCSA works. DeepBinDiff [29] generates instruction-
level embedding with a pre-trained Word2Vec model [64]. Then, it
produce embedding of a basic block by averaging the embeddings of
the basic block’s instructions. DeepBinDiff is a block-level matching
technique which is not suitable for our framework. IMF-SIM [86]
collect execution traces from functions and compute the similarity

ICSE 2024, April 2024, Lisbon, Portugal

score of two binary functions by machine learning algorithms. Com-
pared with computing cosine similarity of function-level embed-
dings, IMF-SIM is hard to scale up. Genius [33] and VulSeeker [35]
encode basic blocks with manually-selected features, while recent
works [50, 62, 80, 81] demonstrate semantic-aware techniques usu-
ally perform better in BCSA task.

DNN-Testing. With the increasing prevalence of machine learn-
ing model deployment in society, it is crucial to test deep neural
networks (DNN) [105] to uncover defects. To address the com-
plex testing oracle problems, metamorphic testing [22] has widely
applied to generate test cases and achieve success in discovering
defects of DNN models in various domains, such as image classifi-
cation [30, 42, 75, 84, 102-104], NLP [18, 43, 59, 101], autonomous
driving systems [65], and code completion systems [53]. For testing
ML-based BCSA, input generation is challenging since randomly
perturbing the binary code can easily break its functionality. Lever-
aging the reassembleable disassembling technique [83, 85] is a
practical solution. Moreover, Wong et al. [89] test several SoTA
GNN-based BCSA models with dataset augmented by obfuscation
techniques, which effectively mitigates adversarial attacks.

9 CONCLUSION

This paper studies the limitations of de facto DNN-based BCSA
tools and summarizes failure patterns. We then accordingly design
a novel input repairing tool, BINAUG, to enhance the performance
of existing BCSA tools. Experimental results show that BiNnauG
significantly improves the performance of SOTA BCSA tools across
different benchmarks and tasks.

ACKNOWLEDGEMENTS

This work was supported in part by CCF-Tencent Open Research
Fund and a RGC ECS grant under the contract 26206520. We are
grateful to the anonymous reviewers for their valuable comments.

REFERENCES
[

[n.d.]. 3.11 Options That Control Optimization. https://gcc.gnu.org/onlinedocs/

gee/Optimize-Options.html.

[2] [n.d.]. Average embedding vectors. https://datascience.stackexchange.com/
questions/107462/why-does-averaging-word-embedding-vectors-exctracted-
from-the-nn-embedding-laye.

[3] [n.d.]. binaug. https://github.com/wwkenwong/BinAug/.

[n.d.]. BSCA. https://sites.google.com/view/binaug/bsca/.

[5] [n.d.]. Hungarian algorithm. https://en.wikipedia.org/wiki/Hungarian_

=

algorithm.

[6] [n.d.]. Parameter Analysis. https:/sites.google.com/view/binaug/parameter-
analysis.

[7] [n.d.]. Result Website. https://sites.google.com/view/binaug.

[8] [n.d.]. Speedy cosine similarity computation in PyTorch. https:

//stackoverflow.com/questions/50411191/how-to-compute- the-cosine-
similarity-in-pytorch-for-all-rows-in-a-matrix-with-re.
[9] [n.d.]. Yara. http://virustotal.github.io/yara/.

[10] 2014. BinDiff. https://www.zynamics.com/bindiff.html.

[11] Uri Alon and Eran Yahav. 2021. On the Bottleneck of Graph Neural Networks
and its Practical Implications. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
https://openreview.net/forum?id=i800PhOCVH2

[12] Laszl6 Babai and Ludek Kucera. 1979. Canonical labelling of graphs in linear

average time. 20th Annual Symposium on Foundations of Computer Science (sfcs

1979) (1979), 39-46.

Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher

Kruegel, and Engin Kirda. 2009. Scalable, behavior-based malware clustering..

In NDSS, Vol. 9. 8-11.

[13

ICSE 2024, April 2024, Lisbon, Portugal

(14]

[15]

[16

(17]

=
&

[19

[20

[21

[22

[23

[24

[25

(28]

[29

[30

@
=

[32

[33

(34]

®
2

[36

[37

(38

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural
Code Comprehension: A Learnable Representation of Code Semantics (NIPS
2018).

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2012. Representation
Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35 (2012), 1798-1828.

Michael Brengel and Christian Rossow. 2021. { YARIX }: Scalable { YARA-based }
malware intelligence. In 30th USENIX Security Symposium (USENIX Security 21).
3541-3558.

Chen Cai and Yusu Wang. 2020. A Note on Over-Smoothing for Graph Neural
Networks. ICML Workshop: Graph Representation Learning and Beyond, 2020.
(2020).

Jialun Cao, Meiziniu Li, Yeting Li, Ming Wen, S. C. Cheung, and Haiming Chen.
2020. SemMT: A Semantic-Based Testing Approach for Machine Translation
Systems. ACM Transactions on Software Engineering and Methodology (TOSEM)
31(2020), 1 - 36.

Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan
Cho, and Hee Beng Kuan Tan. 2016. Bingo: Cross-architecture cross-os binary
search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. 678-689.

Di Chen, Shanshan Zhang, Jian Yang, and Bernt Schiele. 2020. Norm-Aware
Embedding for Efficient Person Search. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2020), 12612-12621.

Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing
Huang, Wei Zou, and Peng Liu. 2015. Finding unknown malice in 10 seconds:
Mass vetting for new threats at the google-play scale. In 24th { USENIX} security
symposium ({ USENIX} security 15). 659-674.

Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 1998. Metamorphic testing:
a new approach for generating next test cases. Technical Report. Technical Report
HKUST-CS98-01, Department of Computer Science, Hong Kong

Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent
Variable Models for Structured Data. In International Conference on Machine
Learning.

Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of
Binaries (PLDI).

Yaniv David and Eran Yahav. 2014. Tracelet-based Code Search in Executables.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI "14). ACM, 349-360.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
(2019), 4171-4186.

Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. 2022. Data Augmentation
for Deep Graph Learning: A Survey. SIGKDD Explor. Newsl. 24, 2 (dec 2022),
61-77. https://doi.org/10.1145/3575637.3575646

S. H. Ding, B. M. Fung, and P. Charland. 2019. Asm2Vec: Boosting Static Repre-
sentation Robustness for Binary Clone Search against Code Obfuscation and
Compiler Optimization. In IEEE S&P.

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DEEPBINDIFF:
Learning Program-Wide Code Representations for Binary Diffing. (2020).
Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M. Rao,
Jagadeesh Chandra J. C. Bose, Neville Dubash, and Sanjay Podder. 2018. Identi-
fying implementation bugs in machine learning based image classifiers using
metamorphic testing. Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (2018).

Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
execution: Dynamic similarity testing for program binaries and components. In
23rd { USENIX} Security Symposium ({ USENIX} Security 14). 303-317.
Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and Mourad
Debbabi. 2014. Binclone: Detecting code clones in malware. In 2014 Eighth
International Conference on Software Security and Reliability (SERE). IEEE, 78—
87.

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
480-491.

Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically
Finding Semantic Differences in Binary Programs (ICICS).

Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker:
A semantic learning based vulnerability seeker for cross-platform binary. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 896-899.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263-1272.

Irfan Ul Haq and Juan Caballero. 2021. A survey of binary code similarity. ACM
Computing Surveys (CSUR) 54, 3 (2021), 1-38.

Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. 2011.
Finding software license violations through binary code clone detection. In

[39

[40

[41]

[42

[43

[44

[45

[46

[47

[48

[49

[50

[51

[52

[53

[54

[55

[56

[57

[58

[59

[60

[61

[62]

Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang

Proceedings of the 8th Working Conference on Mining Software Repositories. 63—
72.

SA Hex-Rays. 2014. IDA Pro: a cross-platform multi-processor disassembler
and debugger.

Yong Jin Kim (https://stats.stackexchange.com/users/188593/yong-jin kim).
[n.d.]. What does average of word2vec vector mean? Cross Validated.
arXiv:https://stats.stackexchange.com/q/318882 https://stats.stackexchange.
com/q/318882 URL:https://stats.stackexchange.com/q/318882 (version: 2017-12-
15).

Xin Hu, Kang G Shin, Sandeep Bhatkar, and Kent Griffin. 2013. Mutantx-s:
Scalable malware clustering based on static features. In 2013 { USENIX} Annual
Technical Conference ({USENIX} { ATC} 13). 187-198.

Zhenlan Ji, Pingchuan Ma, Yuanyuan Yuan, and Shuai Wang. 2023. CC: Causality-
Aware Coverage Criterion for Deep Neural Networks. 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE) (2023), 1788-1800.
Mingyue Jiang, Tsong Yueh Chen, and Shuai Wang. 2022. On the effectiveness
of testing sentiment analysis systems with metamorphic testing. Inf. Softw.
Technol. 150 (2022), 106966.

Giorgios Kollias, Shahin Mohammadi, and Ananth Y. Grama. 2012. Network
Similarity Decomposition (NSD): A Fast and Scalable Approach to Network
Alignment. IEEE Transactions on Knowledge and Data Engineering 24 (2012),
2232-2243.

Oleksii Kuchaiev and Natasa Przulj. 2011. Integrative network alignment reveals
large regions of global network similarity in yeast and human. Bioinformatics
2710 (2011), 1390-6.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In IEEE S&P.

Eugene L Lawler. 1963. The quadratic assignment problem. Management science
9, 4 (1963), 586-599.

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International conference on machine learning. PMLR, 1188-1196.
Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Im-
proved code summarization via a graph neural network. In Proceedings of the
28th international conference on program comprehension. 184-195.

Xuezixiang Li, Qu Yu, and Heng Yin. 2021. PalmTree: Learning an Assembly
Language Model for Instruction Embedding. (2021).

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph matching networks for learning the similarity of graph structured objects.
In International conference on machine learning. PMLR, 3835-3845.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated
graph sequence neural networks. (2016).

Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai
Wang, and Cuiyun Gao. 2023. Cctest: Testing and repairing code completion
systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE).

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System
for Vulnerability Detection. (2018).

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A Structured Self-attentive Sentence
Embedding. (2017).

Liang Liu, Bo Qu, Bin Chen, Alan Hanjalic, and Huijuan Wang. 2017. Modeling
of Information Diffusion on Social Networks with Applications to WeChat.
ArXiv abs/1704.03261 (2017).

Linhao Luo, Gholamreza Haffari, and Shirui Pan. 2023. Graph sequential neural
ode process for link prediction on dynamic and sparse graphs. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining.
778-1786.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-Based Obfuscation-Resilient Binary Code Similarity Comparison
with Applications to Software and Algorithm Plagiarism Detection. IEEE Trans.
Softw. Eng. 43, 12 (Dec. 2017), 1157-1177.

Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic Testing and Certi-
fied Mitigation of Fairness Violations in NLP Models. In IJCAL 458-465.
Shiqing Ma, Yinggqi Liu, Wen-Chuan Lee, X. Zhang, and Ananth Y. Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2018).

Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio,
Mohamad Mansouri, and Davide Balzarotti. 2022. How Machine Learning
Is Solving the Binary Function Similarity Problem. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 2099-2116.
Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni,
and Roberto Baldoni. 2019. SAFE: Self-Attentive Function Embeddings for
Binary Similarity. In Proceedings of 16th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA).

BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing

[63] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni,
and Roberto Baldoni. 2019. Investigating Graph Embedding Neural Networks
with Unsupervised Features Extraction for Binary Analysis. Proceedings 2019

Workshop on Binary Analysis Research (2019).
[64

estimation of word representations in vector space. (2013).
[65

national Symposium on Software Testing and Analysis (2021).
[66

Recommender Systems (2019).
[67

ACM, New York, NY, USA, 1-18. https://doi.org/10.1145/3132747.3132785
(68

arXiv preprint arXiv:2012.08680 (2020).
[69

neighbors. CVPR 2011 (2011), 777-784.
[70

on neural networks 20, 1 (2008), 61-80.

=
[y

conference on computer vision and pattern recognition. 815-823.
[72

Recognition (2012), 3013-3020.
[73

(2019), 467-482.
[74

Software Repositories (MSR) (2022), 423-434.
[75

inferences? Empirical Software Engineering 26 (2021).
[76

bottlenecks on graphs via curvature. (2022).

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. arXiv preprint arXiv:1706.03762 (2017).
[78

1JXMpikCZ
[79

Sequence to sequence for sets. (2016).
[80

on Software Engineering and Methodology 32 (2022), 1 - 34.
[81

Engineering 49 (2023), 226-250.

[82] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei
Zhuge, and Chao Zhang. 2022. jTrans: Jump-Aware Transformer for Binary

Code Similarity. (2022). https://doi.org/10.1145/3533767.3534367
(83

[84

Object Detection Systems. In ASE.

oo
i)

In USENIX Security.
[86

Software Engineering (ASE). IEEE, 319-330.
[87

Series, 2(9):12-16.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Qi Pang, Yuanyuan Yuan, and Shuai Wang. 2021. MDPFuzz: testing models
solving Markov decision processes. Proceedings of the 31st ACM SIGSOFT Inter-

Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun,
Jian Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, and Dan Pei. 2019. Personalized
re-ranking for recommendation. Proceedings of the 13th ACM Conference on

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore:
Automated Whitebox Testing of Deep Learning Systems. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17).

Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020.
TREX: Learning Execution Semantics from Micro-Traces for Binary Similarity.

Danfeng Qin, Stephan Gammeter, Lukas Bossard, Till Quack, and Luc Van
Gool. 2011. Hello neighbor: Accurate object retrieval with k-reciprocal nearest

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2008. The graph neural network model. IEEE transactions

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE

Xiaohui Shen, Zhe L. Lin, Jonathan Brandt, Shai Avidan, and Ying Wu. 2012.
Object retrieval and localization with spatially-constrained similarity measure
and k-NN re-ranking. 2012 IEEE Conference on Computer Vision and Pattern

Aarne Talman, Anssi Yli-Jyré, and Jorg Tiedemann. 2019. Sentence embeddings
in NLI with iterative refinement encoders. Natural Language Engineering 25, 4

Wei Tang, Yanlin Wang, Hongyu Zhang, Shi Han, Ping Luo, and Dongmei Zhang.
2022. LibDB: An Effective and Efficient Framework for Detecting Third-Party
Libraries in Binaries. 2022 IEEE/ACM 19th International Conference on Mining

Yonggiang Tian, Shiqing Ma, Ming Wen, Yepang Liu, S. C. Cheung, and X. Zhang.
2021. To what extent do DNN-based image classification models make unreliable

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen
Dong, and Michael M. Bronstein. 2022. Understanding over-squashing and

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. International Con-
ference on Learning Representations (2018). https://openreview.net/forum?id=

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. 2016. Order matters:

Huaijin Wang, Pingchuan Ma, Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2022.
sem2vec: Semantics-aware Assembly Tracelet Embedding. ACM Transactions

Huaijin Wang, Pingchuan Ma, Yuanyuan Yuan, Zhibo Liu, Shuai Wang, Qiyi
Tang, Sen Nie, and Shi Wu. 2023. Enhancing DNN-Based Binary Code Function
Search With Low-Cost Equivalence Checking. IEEE Transactions on Software

Huaijin Wang, Shuai Wang, Dongpeng Xu, X. Zhang, and Xiao Liu. 2022. Gener-
ating Effective Software Obfuscation Sequences With Reinforcement Learning.
IEEE Transactions on Dependable and Secure Computing 19 (2022), 1900-1917.

Shuai Wang and Zhendong Su. 2020. Metamorphic Object Insertion for Testing

Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling.

Shuai Wang and Dinghao Wu. 2017. In-memory fuzzing for binary code simi-
larity analysis. In 2017 32nd IEEE/ACM International Conference on Automated

Boris Weisfeiler and Andrei Leman. 1968. THE REDUCTION OF A GRAPH TO
CANONICAL FORM AND THE ALGEBRA WHICH APPEARS THEREIN. NTI,

[88

[89

[90

[o1

[92

[93

[94

[95

[96

[97

[98

[99

[100

[101

[102

[103

[104

[105]

[106

[107

[108

[109

[110

ICSE 2024, April 2024, Lisbon, Portugal

Asiri Wijesinghe and Qing Wang. 2022. A New Perspective on "How Graph
Neural Networks Go Beyond Weisfeiler-Lehman?". In International Conference
on Learning Representations.

Wai Kin Wong, Huaijin Wang, Pingchuan Ma, Shuai Wang, Mingyue Jiang,
Tsong Yueh Chen, Qiyi Tang, Sen Nie, and Shi Wu. 2022. Deceiving Deep Neural
Networks-Based Binary Code Matching with Adversarial Programs. 2022 IEEE
International Conference on Software Maintenance and Evolution (ICSME) (2022),
117-128.

Seunghoon Woo, Sung-Hwuy Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh.
2021. CENTRIS: A Precise and Scalable Approach for Identifying Modified
Open-Source Software Reuse. 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE) (2021), 860-872.

Yan Xiao, Ivan Beschastnikh, David S. Rosenblum, Changsheng Sun, Sebastian G.
Elbaum, Yun Lin, and Jin Song Dong. 2021. Self-Checking Deep Neural Net-
works in Deployment. 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE) (2021), 372-384.

Yan Xiao, Yun Lin, Ivan Beschastnikh, Changsheng Sun, David Rosenblum, and
Jin Song Dong. 2022. Repairing Failure-inducing Inputs with Input Reflection.
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering (2022).

Xiaofei Xie, Wenbo Guo, L. Ma, Wei Le, Jian Wang, Lingjun Zhou, Yang Liu,
and Xinyu Xing. 2021. RNNRepair: Automatic RNN Repair via Model-based
Analysis. In International Conference on Machine Learning.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks? (2019).

Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Improving
Binary Code Similarity Transformer Models by Semantics-Driven Instruction
Deempbhasis. (2023).

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In CCS.

Hui Wang Ya Liu. 2018. Tracking Mirai variants. https://www.virusbulletin.
com/conference/vb2018/abstracts/tracking-mirai-variants/.

Can Yang, Zhengzi Xu, Hongxu Chen, Yang Liu, Xiaorui Gong, and Baoxu
Liu. 2022. ModX: binary level partially imported third-party library detection
via program modularization and semantic matching. In Proceedings of the 44th
International Conference on Software Engineering. 1393-1405.

Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020.
Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity
Detection. (2020).

Zeping Yu, Wenxin Zheng, Jiagi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020.
CodeCMR: Cross-Modal Retrieval For Function-Level Binary Source Code
Matching. In Neural Information Processing Systems.

Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2021. Enhancing Deep Neural
Networks Testing by Traversing Data Manifold. arXiv preprint arXiv:2112.01956
(2021).

Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022. Unveiling Hidden DNN Defects
with Decision-Based Metamorphic Testing. Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (2022).

Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2023. Revisiting neuron coverage for
dnn testing: A layer-wise and distribution-aware criterion. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 1200-1212.
Yuanyuan Yuan, Shuai Wang, Mingyue Jiang, and Tsong Yueh Chen. 2021.
Perception Matters: Detecting Perception Failures of VQA Models Using Meta-
morphic Testing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 16908-16917.

J Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learning Testing:
Survey, Landscapes and Horizons. IEEE Transactions on Software Engineering 48
(2019), 1-36.

Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wenchang
Shi, and Jian Zhang. 2022. Hunting bugs with accelerated optimal graph vertex
matching. Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (2022).

Zhaowei Zhang, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Diet code
is healthy: simplifying programs for pre-trained models of code. Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (2022).

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and
Neil Shah. 2020. Data Augmentation for Graph Neural Networks. In AAAT
Conference on Artificial Intelligence.

Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. 2017. Re-ranking Person
Re-identification with k-Reciprocal Encoding. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017), 3652-3661.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in neural information processing
systems 32 (2019).

