
Are We There Yet? Filling the Gap Between Binary Similarity Analysis and

Binary Software Composition Analysis

Huaijin Wang, Zhibo Liu†, Shuai Wang†

Hong Kong University of Science and Technology

{hwangdz, zliudc, shuaiw}@cse.ust.hk

Ying Wang
Northeastern University (China)

wangying@swc.neu.edu.cn

Qiyi Tang, Sen Nie, Shi Wu
Keen Security Lab, Tencent

{dodgetang, snie, shiwu}@tencent.com

Abstract—Software composition analysis (SCA) has attracted

the attention of the industry and academic community in

recent years. Given a piece of program source code, SCA

facilitates extracting certain components from the input

program and matching the extracted components with open-

source software (OSS) libraries. Despite the prosperous de-

velopment of SCA, binary SCA (BSCA) is highly challenging

and still underdeveloped. Few available BSCA solutions are

either closed source (for commercial usage) or suffer from

low performance. Nevertheless, a related line of research,

binary similarity analysis (BSA), which decides the similarity

between two pieces of binary code, has been progressively

developed in academia for decades. De facto BSA techniques,

often based on deep learning, efficiently analyze large-scale

executables with high accuracy.

This study explores bridging the gap between state-of-

the-art (SOTA) BSA and BSCA. We spent considerable

manual effort building the first large real-world benchmark

dataset, containing over 55 million lines of C/C++ code. Then,

we establish our BSCA pipeline by extending and calibrating

the SOTA SCA pipeline. Particularly, we concretize the key

procedure of BSCA, namely matching a binary component

with OSS using six SOTA BSA techniques. Evaluation using

our benchmark dataset reveals that simply employing BSA

in BSCA exhibits less desirable accuracy, as BSCA faces

unique challenges. After inspecting the failed cases, we

propose three enhancements whose hybrid usage improves

the F1 score of BSCA by over 30% and outperforms SOTA

commercial BSCA software. Our experiment on 1-day vul-

nerability detection demonstrates our BSCA framework’s

effectiveness. We also discuss several open challenges and

potential solutions to augment BSCA solutions.
†

1. Introduction

Software composition analysis (SCA) identifies the
potential use of third-party and open-source software
(OSS) projects in a given software. Adopting SCA
enables localizing potentially vulnerable or outdated
OSS projects, reducing risk factors, ensuring license
compliance, and promoting healthy open-source
usage. To date, production SCA tools are offered
by the industry [6, 8, 9, 24, 26], and many research
works [34, 41, 42, 68, 69, 75, 83, 90, 94, 101, 104, 105]
have been published in recent years. Many of

†Corresponding authors.

them [8, 24, 26, 83, 94] require the source code,
precise package structures [34, 75, 105], class/methods
declarations [34, 68, 69, 104, 105], and manifest files [101]
for OSS & version identification.

Despite the successful adoption of SCA techniques,
software’s source code is not always available in many real-
world, security-sensitive scenarios. In fact, binary code is
the primary information available when performing SCA
over commercial off-the-shelf (COTS) software. With this
regard, binary software composition analysis (BSCA) has
become a demanding yet under-explored field [6, 9].

On the other hand, the industry and the security
community have achieved remarkable progress in binary
similarity analysis (BSA) [47, 49, 77, 95] in recent years.
BSA quantifies the similarity between two pieces of binary
code, which forms the basis of various software security
and software (re-)engineering applications. For example,
BSA promotes malware analysis by comparing suspicious
code with known malware families to determine its poten-
tial maliciousness [50, 59]. BSA also helps to discover code
clones and algorithm plagiarism in executables [74, 102].

Motivation. From a holistic view, BSA and BSCA share
conceptually similar technical demand about “binary code
matching.” With over twenty years of development [35, 55],
BSA has been enhanced from various perspectives using
syntactic-, structure-, and semantics-based methods. To
date, advanced BSA techniques extensively use deep
neural networks (DNNs), including representative learn-
ing and large language models (LLMs)-based embed-
ding [47, 70, 77, 98, 99]. In contrast, BSCA, as an emerging
security demand, has not been well-explored by academia.
Contemporary BSCA works [48, 56, 100] mostly rely on
string literals and exported symbols. However, string
literals can be easily changed, and exported symbols are
not always available. We believe they cannot be considered
the best practice of BSCA.

Nevertheless, given the conceptual similarity of BSA
and BSCA, one natural idea is to use well-developed
BSA techniques to solve BSCA. Since BSCA serves as
the cornerstone for many security applications and risk
assessments, analysis errors are particularly unwanted,
which could substantially affect the trustworthiness of
today’s software security landscape. Thus, it is intriguing
and urgent to know if de facto BSA solutions can be
extended to the demanding BSCA field to achieve high
accuracy. This study is thus motivated to provide a sys-
tematic understanding of BSCA and explore the feasibility
of BSA-based BSCA solutions.

This work conducts the first comprehensive study to an-
alyze de facto BSA techniques’ capability to support BSCA.
We spend great manual effort (one senior Ph.D. student
and two security engineers for about a month) to form the
first large real-world dataset for BSCA benchmarking. Our
dataset encompasses 35 complex real-world executables
(including Chrono Physics Engine [21] and a digital
payment protocol, Nano [18]), where each executable
reuses 12 production OSS projects on average. In total, 255
OSS projects are engaged across two platforms (Windows
and Linux) and three compilation toolchains (gcc, clang,
and MSVC). We extend six SOTA BSA techniques for BSCA
over our dataset. We also compare with commercial SCA/B-
SCA tools to understand “how far” our BSA-empowered
BSCA pipeline can achieve. A vulnerability identification
experiment further demonstrates the usefulness of our
BSCA framework for software security.

We assess BSA tools’ support for BSCA and sum-
marize key findings. We find that BSCA has distinct
requirements from standard BSA. The overemphasis on
precisely program semantics extraction might be less
necessary in the BSCA scenario. Syntactic and control-
flow graph (CFG) features are often sufficient to attribute
a function to third-party OSS libraries. Despite this, identi-
fying exact OSS library versions is still challenging, even
with advanced BSA techniques. We further summarize
lessons and guidance for calibrating and extending the
current BSA techniques for BSCA. Following, we design
three low-cost and highly effective enhancement strategies
to enhance BSA for BSCA from different perspectives. By
applying these strategies, we can vastly enhance BSA tools
for BSCA (increasing F1 score by over 30%), exceeding

the SOTA commercial BSCA solution. In sum, we make
the following contributions:

• We conduct the first comprehensive study in bridg-
ing BSA techniques to BSCA, a highly demanding
yet under-explored application field. We detail a
practical BSCA pipeline based on de facto BSA
solutions, which shows excellent feasibility via
experimental results.

• We form the first large real-world and version-

representative BSCA benchmark dataset containing
over 55 million lines of C/C++ code to assess the
support of advanced BSA techniques for BSCA.
We benchmark six SOTA, “out-of-the-box” BSA
tools in their support for BSCA, summarizing
findings that can be leveraged as guidance to boost
BSA-based BSCA.

• Based on our findings, we design three enhance-
ment strategies that can significantly enhance the
effectiveness of BSA techniques in BSCA. Ac-
cording to our evaluation, our research prototype
outperforms the SOTA BSCA tools and effectively
detects potential 1-day vulnerabilities.

Artifact Availability. Our artifact is available at our
website [7].

2. Preliminaries

2.1. Software Composition Analysis (SCA)

2.1.1. SCA Overview. OSS is frequently reused to fa-
cilitate the fast development of applications. However,

C1

C2

C3

C4Exe

OSS1

OSS2…

OSSn

Custom code

OSS

database

vul1

Vulnerability

database

vul2

vul3

vulm

1. Preprocess 2. OSS & version

identification
3. Vulnerability

identification

…

Figure 1. SCA workflow. In the context of BSCA, this paper primarily
explores how to concrete the second phase, OSS & version identification,
with various BSA techniques.

extensive OSS reuse gives attackers opportunities to exploit
known vulnerabilities, which may cause severe security
issues for software users. On the other hand, developers
may not know which OSS is assembled in their software
because of many indirect and transitive dependencies. Thus,
SCA [29, 32] has become a common practice that helps
developers quickly track and analyze any OSS brought
into a project. Then, developers can address security
risks from known vulnerabilities and avoid unauthorized
software usage. Formally, let C = F (S,D) be the SCA
procedure, where S denotes the input software, and D
denotes databases maintained by the SCA service provider.
The output C represents a list of uncovered software

compositions in S. Each element c ∈ C forms a 2-tuple
(l, v), where l represents an OSS (e.g., a library) on the
market, and v denotes valuable information concerned by
the users. Given that many SCA tasks are for vulnerability
detection, v usually represents CVE vulnerabilities, e.g.,
Heartbleed [87] and Log4j [39].

Fig. 1 depicts the high-level workflow of SCA. Note
that this workflow subsumes SCA’s different scenarios,
where the input software S could be open-source programs,
Android APKs, or binary executables (i.e., BSCA). Overall,
typical SCA analysis comprises the following three phases,
where one phase’s output serves as the next phase’s input.

¬ Component Dissection. First, the input software S
needs to be pre-processed and dissected into a list of code
components S = [c1, c2, · · · , cn]. Dissected components
will be used for later component identification. However,
choosing a suitable code structure unit as the “component”
is not as straightforward as it looks. To date, we have
seen techniques proposed to dissect S in terms of different
hierarchical structures of the software. For instance, in
typical Android APKs, the package structure that can
reflect rich information on third-party libraries is often
leveraged by Android SCA works to dissect Android
apps [34, 69, 75, 104, 105]. Besides, source code files, class
hierarchies (particularly for object-oriented languages), and
functions are also commonly used as components in SOTA
SCA works [34, 94, 101].

­ OSS & Version Identification. Let an OSS database
be Doss, where each ossi ∈ Doss is an OSS project with its
version information specified. For each component cj ∈ S,
we need to decide if it originates from any ossi ∈ Doss.
This is the key challenge for SCA, in the sense that we need
to decide the similarity between cj and records in Doss.
Today, most existing SCA works aim at enhancing the
accuracy of matching cj with ossi. Ideally, each cj from
OSS projects is correctly matched to its corresponding OSS
with correct version. A component cj , however, should not
be matched to any ossi ∈ Doss if it is user-written code,
which is referred to as “custom code” in Fig. 1.

® 1-day Vulnerability Identification. Once a set of
reused OSS projects L = {l1, l2, · · · , ln} has been detected
in S, the next step would be exploring the vulnerability
vi within li ∈ L, where li denotes a specific version of an
OSS library with known vulnerabilities [41].

Prior works [34, 48, 69, 75, 94, 101, 104] often assume
the availability of mapping between vulnerability and
OSS. In Sec. 8, with a vulnerability dataset from previous
works [44, 47, 91], we demonstrate the effectiveness of
BSCA for detecting 1-day vulnerabilities.

2.1.2. SCA Metrics. Existing works [83, 88, 94, 101, 104]
primarily benchmark SCA with standard metrics, including
precision, recall, and F1 score. Let the ground truth be
R∗, which denotes the OSS projects reused in software S,
and those detected by an SCA tool in S be R. Then, true
positives are TP = R ∩R∗, and precision, recall, and F1

scores are computed by
|TP |
|R| ,

|TP |
|R∗| , and 2×precision×recall

precision+recall
,

respectively. With high precisions, SCA tools will warn
of vulnerabilities with high confidence, and they are also
expected to have high recalls to avoid missing potential
vulnerabilities.

2.1.3. BSCA. BSCA [6, 9] denotes a demanding sub-area
of SCA. BSCA aims to conduct SCA over executables com-
piled from the C/C++ programs, assuming the source code
is unavailable (particularly in security-related applications,
such as legacy code analyzing). Meanwhile, the security
community [58] also champions the necessity of directly
analyzing the executables to identify all OSS. However,
existing SCA solutions for analyzing source code and
Android APKs may be inapplicable to C/C++ executables.
Precisely extracting features like variable names and types
from executables is difficult since compilers always strip
such symbols and change the code structure (e.g., CFG)
with optimizations. Hence, many source-based SCA tech-
niques are inapplicable. The following section compares
analyzing Android APKs and C/C++ executables.
Android APKs vs. C/C++ Executables. To clarify, SCA
for Android APKs also frequently targets low-level code in
executable format. Nevertheless, reverse engineering An-
droid apps is deemed much simpler than decompiling x86
executables compiled from C/C++ code. Accordingly, more
information is available for Android APKs SCA. When per-
forming SCA for Android APKs [34, 69, 75, 101, 104, 105],
various well-established reverse engineering tools. includ-
ing APKTool [3], dex2jar [12], and Androguard [1], are
employed to recover the package structures, method pro-
totypes, and class inheritance dependencies. Decompiling
C/C++ executables is much more challenging, and recov-
ering the high-level information (e.g., class inheritance
dependencies) is not well addressed yet [84]. Performing
BSCA on C/C++ executables has its unique challenge,
and we launch the first in-depth study to explore feasible
technical solutions.

2.2. Binary Similarity Analysis (BSA)

Many research works about BSA are emerging in
the security and software engineering communities [55].
Overall, given two pieces of binary code, BSA decides
how similar they are with a score.
B2B and B2S. Based on the types of targets being matched,
we classify BSA into 1) binary-to-binary similarity analysis

(B2B) and 2) binary-to-source similarity analysis (B2S).
The research community appears to pay much more atten-
tion to B2B than B2S. A recent survey [55] investigated
70 binary code similarity approaches, in which merely six
tools [48, 54, 56, 99, 100, 103] aiming at B2S.

Most B2B works perform semantics-aware search for
function-level assembly code [37, 47, 55, 70, 95, 98, 106].
They aim to determine the semantical similarity of two
functions in binary code, even if they show distinct
low-level representations due to different compilers and
optimizations. The usage of B2B tools is similar to search
engines. Given an input assembly function f , the B2B
search engines retrieve and rank the top-k similar functions
by their similarities from a repository of assembly functions
RP . Similarly, the function-level B2S works [60, 99] are
evaluated by replacing the assembly functions in the RP
with source code functions.
B2B for BSCA. Though B2B works appear to be the
mainstream solution for BSA [55], using B2B for BSCA
faces a unique challenge: we must compile OSS projects
into binary code to enable existing B2B techniques. In
production, BSCA is envisioned to analyze hundreds of
OSS projects with various dependencies and compilation
toolchains/configurations. Therefore, compiling all OSS
projects requires enormous resources and considerable man-
ual effort since most OSS projects cannot be automatically
tuned to use different compilation toolchains. Some OSS
projects available online (e.g., RapidJSON [22]) do not
even provide a Makefile. Additionally, OSS can upgrade
and change; compilation may not be a one-time effort.
Immaturity of B2S. B2S is much less explored than
B2B. In general, B2S faces the cross-modality challenge
(i.e., accurately pairing source code and binary code with
similar semantics), which is inherently formidable. In
contrast, B2B avoids such a problem by only comparing
more “regularized” low-level binary code. To overcome
the cross-modality challenge, recent B2S papers [56, 100]
propose to extract features (e.g., numbers and strings)
remaining unchanged after compilation while ignoring
program semantics. There are also B2S studies [54, 60]
converting assembly and source code into the intermediate
representation (IR) for matching; however, compiling OSS
source code into IR faces the same difficulties as B2B
techniques. Nevertheless, while using B2S for BSCA is
less studied, we view it as having great potential (since
the labor of compiling large OSS projects is avoided)
and advocate for more attention. In this study, we assess
CodeCMR [99], the SOTA B2S tool developed by the
industry (see Sec. 4.2).

3. BSCA Technical Pipeline

Motivation. There is a high demand for accurate and de-
pendable BSCA, envisioning the practical need to analyze
closed-source software and track any (unsafe or outdated)
open-source component brought into an executable. Given
that said, it is still unclear about the best practice for
performing BSCA in real-world scenarios. The industry-
leading security vendors are promoting their BSCA solu-
tions, including CodeSentry, offered by GrammaTech [9];
Black Duck, offered by Synopsys [6]; and Scantist [31].
However, none of these commercial tools disclose their
technical solutions in detail.

In short, we believe that the academia and our com-
munity lack a systematic and in-depth understanding
to calibrate the technical solution and uncover the
best practice for performing BSCA. This motivates
our study.

As reviewed in Sec. 2.1, de facto SCA works primarily
undertake a three-step approach, with OSS & version
identification being the central technical challenge. We
now discuss the potential technical solutions for each step.

¬ Component Dissection. C/C++ executables lack high-
level program structures. As noted in Sec. 2.1.3, it is
generally challenging to recover high-level program struc-
ture information accurately. Hence, as a practical setting,
this study frames an assembly function as the minimal
program structure unit, i.e., a “component” focused on by
the SCA pipeline.

We view treating functions as “components” for match-
ing as a practical and beneficial setting, whose reasons
are three-fold. First, such a setting follows the convention
of many prior SCA tools (e.g., LibD, ATVHunter, and
Centris), which rely on function-level components to iden-
tify the reused OSS. Second, while recovering source-level
information like classes and variable types is challenging, it
is generally feasible to obtain program function information
(e.g., function entries) precisely, even in stripped binaries.
For instance, [79, 82] achieved above 0.95 F1 scores while
identifying function entries. By utilizing the patterns of
Intel CET (control-flow enforcement technology) instruc-
tions, FuncSeeker can achieve over 0.99 F1 score. IDA
pro [25], the de facto disassembler, claims that it can
identify standard function calls in binaries compiled by
most mainstream compilation toolchains, and numerous
studies [40, 47, 49, 51, 66, 99] use it to extract assembly
functions. Third, using the function granularity component
can ease the burden of extending various existing works
to bridge BSA and BSCA since most existing BSA works
focus on function-level similarity [55].

­ OSS & Version Identification. We extensively
studied prior SCA works. Particularly, we refer to
recently published works, including LibRadar [75],
LibD [69], LibID [104], LibScout [34], Centris [94], and
ATVHunter [101]. According to our study, de facto SCA
methods are primarily similarity-based detections [101].

The similarity-based SCA performs software similarity
analysis to match a code component to known OSS projects.
Software similarity comparison methods can be performed
at different hierarchical representations, including opcode
sequences, code structures, and dependency relations.
Recent SCA works [94] also use fuzzy hash or machine
learning [101] for higher matching accuracy.

We envision that well-developed BSA techniques can
be used as mature technical solutions to improve the
accuracy of OSS & version identification in the BSCA
scenario. Accordingly, as reviewed in Sec. 2.2, we will
benchmark both B2B and B2S, as two mainstreams in
BSA, on its support of BSCA.

® Valuable Information Identification. Matching suc-
cessfully identified OSS with valuable information records
is mostly unchanged comparing BSCA with SCA. Thus, we
consider step ® to have no extra difficulties: the “valuable
information database” [41, 42] adopted by existing SCA

OSS dataset

Redundancy

elimination

Code

segmentation

Application

code of OSS

Offline Database

Construction
Online Analysis

Input binary

Disassembling

& dissection

BSA
OSS & version

identification

Report

Similar
function

pairs

Binary
functions

Figure 2. BSCA implementation, including the offline database construc-
tion and the online analysis phase (the latter is introduced in Sec. 3).

solutions can be reused here. In this study, we consider
the task of vulnerability identification.

4. Solving BSCA with BSA

Based on the SOTA source-based SCA work, Cen-
tris [94], we propose the BSA-based BSCA workflow in
Sec. 4.1. Then, we elaborate on selecting the representative
BSA techniques in Sec. 4.2. We also introduce our BSCA
benchmarking dataset in Sec. 4.3.

4.1. BSCA Implementation

As illustrated in Fig. 2, there are two primary phases
in implementing BSCA: the offline database construction
phase and the online analysis phase (the latter phase
includes all three steps ¬ ­ ® introduced in Sec. 3).
The offline phase collects and stores OSS projects into a
database for query, whereas the online phase iterates over
functions in the input executable and queries the database
to recognize all reused OSS and the versions. We now
discuss implementing these two phases.
Offline Database Construction. While building the OSS
database is generally mundane, given its large size, we
often need to explore reducing the database to speed up
queries. To do so, Centris proposed redundancy elimination

and code segmentation to minimize the database. We extend
similar ideas in the BSCA scenario.

version 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
0.9 𝑎 𝑏
1.0 𝑎 𝑏
1.1 𝑐 𝑏
1.2 𝑐 𝑑

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 versions𝑎 [0.9, 1.0]𝑏 [0.9, 1.0, 1.1]𝑐 [1.1, 1.2]𝑑 [1.2]

Figure 3. Redundancy elimination.

Redundancy Elimination. A common observation is that
new versions of OSS libraries are often built on top of their
earlier version, leaving many functions unchanged. Hence,
storing only one copy of such unchanged functions across
all versions is sufficient. Thus, redundancy elimination is
proposed to reduce the database size and speed up database
queries. As shown in Fig. 3, by saving functions with their
relative versions instead of storing each version’s functions,
the number of functions to be analyzed reduces from 8 to
4. We reuse Centris’s implementation for B2S and extend
this idea to build a binary OSS database for B2B settings.
Code Segmentation. Observation of real-world OSS shows
that an OSS project may borrow code components from

𝑃2
2022𝑃1

2021

𝑃2
2022𝑌 𝑃1

2021

Figure 4. Code segmentation.

other projects. Therefore, segmenting an OSS project’s
application code can reduce the false positives caused by
the borrowed code. Fig. 4 presents an example. Let P1

and P2 be two OSS projects, and P2 reuses some code
(i.e., Y) from P1. Given an input binary reusing P1, P2

may be classified as reused due to the existence of the
code of Y , which causes a false positive.

The code segmentation cross-compares functions across
different OSS projects, and only the functions with an
earlier timestamp are kept. In Fig. 4, code segmentation
removes Y from P2 since Y was created before P2. The
remaining code is unique, forming the custom code of P2.
To get functions’ creation time, besides using the timestamp
of a git repository’s tag as Centris, we also ensure the
reliability of collected timestamps (e.g., zlib [33]) with
TPLite [62].

Algorithm 1 OSS identification

1: function IDENTIFY OSS(Fbin, DBoss, θ)
2: # Fbin is the set of input functions.
3: # DBoss stores all OSS instances.
4: # θ is the threshold.
5: R← set()
6: for oss ∈ DBoss do
7: Foss ← oss.functions
8: M ← MATCH FUNCTIONS(Fbin, Foss, θ)
9: p← IS REUSED(M , oss)

10: if p = True then . oss is identified as reused.
11: R← R ∪ {oss}

return R
12: function MATCH FUNCTIONS(Fbin, Foss, θ)
13: M ← set()
14: for f ∈ Fbin do
15: t← SEARCH MOST SIMILIAR(f , Foss) . Using Milvus
16: if SIMILARITY(t, f) > θ then . f matches t
17: M ←M ∪ {(t, f)}

return M

Online Analysis. Further to the above steps, we detail the
implementation of online BSCA analysis below.

Disassembling & Dissection. Disassemblers turn the input
binary into assembly code and extract assembly functions.
Disassembling stripped binaries is challenging. Never-
theless, with the development of reverse engineering
techniques, existing well-developed disassemblers can
identify assembly functions with high precision [79, 82, 97].
This study uses IDA pro [25], a widely-used disassem-
bler [40, 47, 49, 51, 99]. After this process, we get Fbin as
one of the inputs to Alg. 1.

BSA. This process differentiates our BSCA workflow from
Centris. Originally, Centris receives the source code of
a function and converts the source code function into a
hash value with TLSH [81]. TLSH is a locality-sensitive
hash library that can reflect the similarity of two functions
by the distance of their hash values. If two functions are
syntactically similar, their hash values will have a short
distance, indicating that one function is likely a copy of the
other. Although TLSH effectively detects source code reuse,
it is unsuitable for binary code since different compilers and
optimizations can generate dramatically different assembly
codes with the same source code [47, 70]. Hence, in

BSA

push ebp

…

ret

mov rbp,rax

…

call _exit

[0.1, …, 0.5]

[0.2, …, 0.3]

𝑐𝑜𝑠𝑖𝑛𝑒 0.56

Assembly functions Embeddings Similarity

Figure 5. BSA common pipeline.

this study, we replace the TLSH with BSA techniques
introduced in Sec. 2.2.

BSA techniques explored in this study have a common
pipeline. As depicted in Fig. 5, given two assembly
functions, BSA tools convert them into two embedding
vectors. Then the similarity score is computed with these
vectors via cosine similarity. The B2S tool, CodeCMR, can
embed the source code functions similarly. The details of
how they are selected will be elaborated in Sec. 4.2.

Note that the embedding vector of a function can be
used repeatedly. In our implementation, we convert all
functions of the OSS database into embedding vectors
and store them in Milvus [92], a vector database. Given
an embedding vector for querying, Milvus can efficiently
search highly similar vectors in the database.

As shown in MATCH FUNCTIONS() in Alg. 1, we
search the most similar functions in the function set of
an OSS (i.e., Foss) for each input function (line 14). The
search process is accelerated by the well-developed vector
database Milvus (line 15). The embedding vectors of Foss

are stored in Milvus, and the function embedding vectors
of an input binary are used as query inputs. Given an input
function f , the function t with a similarity score higher
than the threshold θ will be deemed similar (line 16). Note
that each selected BSA tool has its own θ. We build a
hyper-parameter selection dataset to determine the proper
θ for each BSA tool (see Sec. 4.3). After iterating all
functions of the input binary, we get the matching results
M (i.e., the similar function pairs of Fig. 2). Then, we
identify whether an OSS is reused and its version with M .
OSS & Version Identification. We decide whether an OSS
instance is reused with similar function pairs (line 9).
At this step, Centris calculates the proportion of the
matched functions M to the entire functions of oss. oss
is deemed as reused (i.e., IS REUSED() returns true)
if the proportion is higher than a threshold (i.e., 0.1 in
Centris). Then, the exact reused OSS version is determined
by exploring if certain functions of M belong to a unique
version. Details of version identification are elaborated in
Sec. 5.3. Sec. 5 uses this approach to benchmark BSA.
Moreover, Sec. 6 proposes three enhancements to replace
Centris’s implementation of IS REUSED() (line 9) with
notably improved BSCA accuracy.

4.2. BSA Tools Selection

A BSA tool searches similar functions in the OSS
database with the input functions; then, we can analyze
the similar functions to produce the knowledge of used
OSS and the specific versions associated. Overall, besides
the mundane requirements of high accuracy and available

implementation, the BSA tool must be highly efficient since
BSCA requires comparing each assembly function of the
input binary against every function in the OSS database.
The OSS database is extremely large for production usage,

TABLE 1. STUDIED VISIBLE BSA TOOLS.

Venue Interal Tool

SAFE [77] DIMVA’19 B2B SAFE [23]

Asm2vec [47] S&P’19 B2B asm2vec-pytorch [4]

PalmTreeG [70] CCS’21 B2B PalmTree [20] and Gemini [13]

PalmTreeB [70] CCS’21 B2B PalmTree [20] and CommercialB
CommercialB B2B CommercialB
CodeCMR [99] NIPS’20 B2S CodeCMR

with millions of functions from various OSS projects and
versions. As a feasible setup, when selecting BSA tools,
we require the average pair-wise similarity comparison
to take less than 10−5 seconds; see Sec. 7 for the cost
assessment.

Selection of B2B Tools. With many B2B tools published
at top-tier conferences, we first collected 15 works
[45, 47, 49, 52, 65, 70, 72, 77, 80, 85, 86, 93, 95, 96, 106]
published in the last five years, from top security and
software engineering conferences, including USENIX
Security, IEEE S&P, NDSS, CCS, ICSE, PLDI, ASE, and
DIMVA. After excluding works without publicly-available
implementation, we retain seven works, including
Gemini [95], VulSeeker [52], SAFE [77], InnerEye [106],
Asm2vec [47], DeepBinDiff [49], and PalmTree [70],
GMN [76]. In addition, we also select an industrial tool.
CommercialB is a widely-used BSA tool developed by a
leading company in the industry, and we blind its name
for legal reasons. They all employ machine-learning
techniques to measure assembly code similarity. After
studying their publications and released code, we
eventually select five B2B tools (see their publications
in Table 1). Explanations of including or excluding B2B
tools are presented in Sec. B.1 of Appendix.

Selection of B2S Tools. As described in Sec. 2.2, the
choices of B2S tools are limited (i.e., BAT [56], OSSPo-
lice [48], B2SFinder [100], FIBER [103], CodeCMR [99],
BugGraph [60], and XLIR [54]). We eventually select the
SOTA B2S work developed by industry, CodeCMR [99].
We also elaborate on the excluded B2S tools in Sec. B.2.

Existing BSCA Solutions. In addition to the analysis of
SOTA BSA tools, we also consider three existing BSCA
solutions, including an anonymized commercial tool, as the
baselines for comparison. CommercialA is a widely-used
commercial BSCA tool developed by a leading company
to ensure application security. CommercialA is generally
deemed as the SOTA BSCA solution with presumably the
best performance, though its internal implementation is
not publicly known. To clarify, soon in our study (as in
Sec. 5), we show that de facto BSA tools, when being
used for BSCA, are less effective than CommercialA.
Nevertheless, we report highly encouraging results that
with our optimizations (Sec. 6), BSCA empowered by BSA
can surpass the SOTA commercial tool CommercialA.

BAT [56] is a representative research work identifying
the reused OSS project with collected string literals.
LibDB [88] is a SOTA BSCA tool using function retrieval
with BSA techniques (i.e., so-called “function vector chan-
nel” in [88]) and basic features like strings and exported
function names (i.e., “basic feature channel” in [88]). Its
released codebase is incomplete and lacks the code for its
basic feature channel. To compare with LibDB, we strictly
follow its paper to complete its implementation.

TABLE 2. STATISTICS OF EXECUTABLE IN OUR BENCHMARK DATASET.

Toolchain # Binaries # Functions # Reuses Avg. size

gcc 14 218,773 198 9,386KB

clang 10 151,730 136 7,470KB

MSVC 11 618,846 86 10,182KB

Total 35 989,349 420 9,089KB

4.3. BSCA Dataset Preparation

We introduce our dataset used for BSCA benchmarking
here. Overall, one of our key contributions is delivering
the first large real-world dataset specifically designed for
BSCA.

Necessity of Building the Dataset. While existing datasets
are mostly used for BSA scenarios, our tentative explo-
ration shows that those datasets are incompatible with
BSCA tasks. First, the datasets (e.g., Coreutils [11], Binu-
tils [5], and OpenSSL [19]) widely used by existing BSA
tools [47, 70, 95, 99] usually provide full functionalities
without using much code from other OSS projects. Thus,
they are not suitable for BSCA benchmarking. Second, the
most frequently-evaluated cross-optimization challenge in
the BSA field may be less critical in the BSCA scenario. Ex-
isting BSA tools [47, 70, 99] aim at learning semantics from
binary code. Hence, they focus on challenges introduced by
different optimizations, compilers, and platforms. The most
challenging setting in BSA is often comparing binaries
compiled without optimization (i.e., O0) and binaries with
heavy optimization (i.e., O3). In reality, however, developers
seldom release executables without optimization. Thus,
besides benchmarking BSCA using various compilers and
platforms, we believe it is more urgent to use optimized
binaries to study the status quo of BSCA.

Benchmark Dataset. We establish the first benchmark
dataset for BSCA, whose establishment involves a consid-
erable amount of manual effort. Three authors, including
a senior Ph.D. student and two security engineers from
the industry, spent about a month on the dataset collection
and manual ground truth marking. All three authors
are highly experienced in reverse engineering, software
security, BSA/SCA, and have constantly published relevant
papers in the community.

This study aims at real-world software with com-
plex software supply chains. Hence, we first search
GitHub repositories with more than five git submod-
ules. The explicitly declared git submodules help us
identify precise reuses since we can know their URLs
and check their tags. There are also reuses in the form
of copy (e.g., ControlBlock [10] uses code copied from
libmcp23s17 [17]). Developers usually locate their reused
packages in a directory like deps/ and third-party/.
Thus, we also identify reused OSS by searching these
directories. While building collected software, we noticed
that some OSS submodules are not compiled into released
binaries since they do not provide functionalities but are
used for other tasks like testing and code formatting. For
instance, googletest [14] is a popular testing framework,
but developers will exclude it from released binaries.
Hence, we should not label it as reused even if it is a
submodule of a repository. Additionally, a project can
produce multiple executables, and a submodule is likely in
merely one of them. Therefore, to collect reliable ground
truth, two authors manually identify the submodules taking

part in the compilation process of an executable and make
sure their labeled ground truth has no conflicts.

Our dataset comprises 35 binaries across two platforms
with nearly one million assembly functions. The total
lines of C/C++ code of the repositories for compiling
these binaries are 55,530,527. All these 35 binaries are
large-size, widely-used applications, including the physical
engine [21] and payment protocol [18]. All information
about these binaries can be found in [7] and Table 7 in
Appendix.

We report our dataset’s statistics in Table 2. ELF
executables are compiled with gcc and clang, while PE
executables are compiled with MSVC. The datasets are
all complex binaries with an average of 12 reused OSS
projects. Specifically, 24 out of 35 binaries are Linux
ELF binaries with 370,503 assembly functions in total.
With manual investigation, we identify that these 24 ELF
binaries reuse 334 OSS versions (of 157 OSS). The average
size of each stripped ELF binary is 8,588 KB, indicating
those binaries are complex (in comparison, the stripped
gcc-7.5.0 executable is 1,023KB).

OSS Database Collection. We build the OSS database
with all identified OSS projects used by benchmark and ten
for hyperparameter tuning. In sum, the OSS database con-
sists of 255 OSS projects, 16,266 versions, and 11,638,109
source functions. These OSS projects, such as APR [2], are
also large-size and frequently linked in daily development.
As aforementioned, evaluated executables have an average
of 12 reused OSS projects. In other words, for each
executable, we benchmark if BSCA solutions can correctly
flag those 12 OSS out of 255 OSS projects in the database.
Overall, we view our setting as challenging and practical
in real-world scenarios.

Hyperparameter Selection Dataset. It is worth noting
that our selected BSA tools all require employing a
validation dataset for hyperparameter tuning. To do so,
we prepare ten large OSS projects and compile all their
versions (a total of 524 binaries) into executables. We
fine-tune each employed BSA tool’s hyperparameter over
a simple OSS classification task using these 524 binaries.
When the classification accuracy is optimal, we select the
best hyperparameter (i.e., θ of Alg. 1) for each BSA tool.

These ten OSS projects are part of our OSS database for
the following study. It is reasonable since a BSCA service
provider always wants a comprehensive OSS database
with as many instances as possible. To make our study
convincing, we avoid querying the OSS database with
binaries that reuse these ten OSS projects. We report that
all 35 executables in Table 2 do not reuse these ten projects.

5. Study

The following sections evaluate how de facto BSA
tools perform in the BSCA scenarios. We first introduce the
experimental setups. Then, we illustrate the performance of
our BSCA framework. Sec. 6 presents useful enhancements,
and Sec. 7 shows the time cost.

5.1. Experimental Setups of BSA Tools

We reuse officially released well-trained models if avail-
able. The official SAFE model was trained with OpenSSL

TABLE 3. AUC SCORES OF BSA TOOLS ON BINUTILS.

Interal Tool gcc -O3 clang -O2 mingw32 -O2

B2B

SAFE .953 .973 .971
Asm2vec .951 .856 .861

PalmTreeG .969 .961 .979
PalmTreeB .989 .991 .989

CommercialB .982 .990 .996

B2S CodeCMR .972 .992 .996

B2B tools search binary functions compiled by gcc -O2.
B2S tool searches the binary functions in the source code.

compiled by gcc and clang with optimizations from O0

to O3, which is frequently used in prior works [70, 95].
Asm2vec follows an unsupervised training paradigm with
the PV-DM model [67]. Given an assembly function, its
embedding is generated after the training process. Thus,
all functions in our OSS database are used for training.
PalmTreeG uses two models, including an instruction-level
embedding model released by PalmTree’s authors and a
function CFG embedding model. We train the second
model in the same method as SAFE. The graph network of
PalmTreeB is trained in the same way as PalmTreeG.
CommercialB and CodeCMR are not publicly available.
Therefore, we sent the binaries to the authors and received
the embeddings for the following study.

Table 3 presents the AUC score of all BSA tools
on Binutils. Both the measurement and the dataset are
frequently used in previous studies [44, 47, 66, 70, 77, 95].
Comparing binaries compiled by gcc -O2 with binaries
compiled by gcc -O3, clang -O2, and mingw32 -O2

correspond to cross-optimization, cross-compiler, and cross-
platform challenges of B2B works. We observe that all
BSA tools perform well on the original BSA task. Almost
all tools achieve AUC scores over 0.95, except Asm2vec on
cross-compiler and cross-platform settings. The relatively
poor performance of Asm2vec is caused by its training
data since we compile the OSS database with gcc only.
Analyzing the binaries compiled by unseen compilers
introduces additional challenges to Asm2vec. However,
as elaborated in Sec. 2.2, compiling the database with
another compiler is costly, and there may be unsupported
features (e.g., using the auto type arguments in a function
declaration is not supported by clang contemporarily).

5.2. OSS Identification

We clarify that OSS identification is much easier than
identifying specific OSS versions reused in the input
executable. Thus, we first report the accuracy of the
OSS identification and then report the result of version
identification. The input binaries have been described in
Sec. 4.3. All binaries are stripped before being analyzed.
Regarding the hyperparameters of Alg. 1, θ is fine-tuned
with the dataset used by each BSA tool.

Recall that the settings of using B2B and B2S are
distinct. When using B2B, we need to compile OSS
projects in our OSS database into assembly code. To
do so, we use the default setting of each OSS project
for compilation. Typically, OSS projects are compiled by
gcc/g++. O2 optimization is usually used by default. On the
other hand, we save the effort of compiling OSS projects
when using B2S.

Table 4 presents the precision, recall, and F1 score

values when using different BSA tools for BSCA. As
introduced in Sec. 4.2, we also consider three SOTA BSCA

TABLE 4. OSS IDENTIFICATION ACCURACY OF DIFFERENT TOOLS.

S1 S2 S3Tool
P R F1 P R F1 P R F1

T1 .281 .074 .117 .231 .065 .102 .000 .000 .000

T2 .103 .475 .169 .110 .411 .174 .007 .018 .010

T3 .124 .450 .195 .122 .330 .178 .023 .018 .020

T4 .191 .465 .271 .207 .264 .232 .500 .020 .038

T5 .422 .322 .365 .342 .238 .281 .138 .214 .168

T6 .246 .065 .103 .346 .083 .134 .231 .188 .207

CA .731 .320 .445 .755 .328 .457 .750 .325 .454

BAT .560 .351 .432 .647 .341 .447 .746 .371 .495

LibDB .250 .606 .354 .316 .602 .415 .219 .526 .309

S1: Binaries are compiled with gcc and no extra flags.
S2: Binaries are compiled with clang and no extra flags.
S3: Binaries are compiled with MSVC and no extra flags.
P, R, and F1 denote precision, recall and F1 score, respectively.
T1-T6 denote SAFE, Asm2vec, PalmTreeG, PalmTreeB ,
CommercialB , and CodeCMR, respectively.
CA is the abbreviation for CommercialA.

solutions (i.e., CA, BAT, and LibDB) obtained from the
commercial market and academia for comparison.

F1 score is the harmonic mean of precision and recall,
and existing academic works use precision and recall to
measure SCA solutions’ performance [48, 56, 88, 104]. Low
precision indicates that many unused OSS projects are
falsely identified, likely resulting in warning developers
with irrelevant 1-day vulnerabilities from unused OSS
projects. Low recall indicates that many reused OSS
projects are missed, which may lead to missing critical
vulnerabilities from missed OSS projects. Therefore, high
precision and recall are critical for a practical SCA solution.

To comprehensively evaluate the feasibility and perfor-
mance of BSCA with the support of BSA techniques, we
classify the input binaries by their compilation toolchains,
as shown in Table 2. Since the projects of our OSS database
are compiled with gcc/g++, we use the ELF binaries
compiled by clang (S2) to represent the cross-compiler
challenge and the PE binaries compiled by MSVC (S3) to
denote the cross-platform challenge. For comparison, the
ELF binaries compiled by gcc/g++ (S1) present the BSCA
performance when input binaries and the OSS database
are compiled with the same toolchain. Since developers
always release software compiled with optimizations, we
do not build a cross-optimization dataset specifically.

Comparison with Existing Solutions. Overall, the results
are not promising when directly employing BSA (either
B2B or B2S) in the pipeline of SCA. It is seen that
the F1 scores are lower than 0.4 when using different
BSA tools. In comparison, CommercialA and BAT manifest
higher accuracy, achieving F1 scores over 0.4 across all
settings. With manual analysis, we find that LibDB’s
suboptimal performance is primarily caused by its em-
ployed BSA tool, Gemini. As noted in [70, 77], Gemini
relies on manually-selected features and is less superior to
de facto semantics-aware BSA techniques. Hence, when
analyzing our benchmark dataset, LibDB primarily resorts
to its extracted “basic features” (e.g., strings and exported
function names). However, compared with BAT, which
allocates heavy weights to long and unique strings, LibDB
treats strings equally, making its precision notably lower
than that of BAT. By comparing the precision and recall of
our BSA tools with existing BSCA solutions, we attribute
the low F1 scores to the low precision of our BSCA
framework with existing BSA techniques. In a total of
18 settings (6 BSA tools with three binary compilation
settings), all settings have significantly lower precision in
identifying reused OSS than BAT and CommercialA.

push r14

...

call operator<

mov ecx eax

mov eax 0xffffffff

test cl cl

jne L2

L1:

...

call operator>

movzx eax al

L2:

add rsp 0x8

pop rbx

pop r14

ret

push rbp

...

call gpr_unref

test eax eax

setne al

je L2

L1:

...

Mov rdi rax

call Destory

L2:

nop

leave

ret

int Value::compare(

const Value& other) const

{

if (*this < other)

return -1;

if (*this > other)

return 1;

return 0;

}

void

SubchannelCallBatchData::Unref()

{

if (gpr_unref(&refs))

Destory();

}

(a) Source code of compare

(b) Source code of Unref (c) Binary code of compare (d) Binary code of Unref

Figure 6. False positive case study.

Low Precision of BSA Tools. As shown in Alg. 1, the
similar function pairs produced by BSA tools determine
the results of OSS identification. Here, we analyze similar
function pairs provided by BSA tools and compare them
with similar source function pairs generated by Centris
using TLSH. In short, we find that our studied BSA tools
yield a noticeable number of false positives, resulting in
low precision on BSCA and falsely alarming vulnerabilities.
Since we compare the assembly functions of the input
binary with the functions of each OSS project in the
database, due to numerous OSS projects in our database, a
function f ∈ Fbin might find similar functions in multiple
OSS projects. As illustrated in Fig. 1, f can be an OSS
project’s custom code or reused function. Thus, a maximum
of one function similar to f is the reuse (true positive),
while other similar functions are false positives. On the
other hand, a false negative occurs when a reused function
is not identified as similar to a function from its reused
OSS. False negatives result in low recall of our BSCA
framework and may miss essential vulnerabilities.

Unsurprisingly, our study shows that BSA tools fre-
quently produce false positives, i.e., identifying functions
from unused OSS projects as similar. Since two functions
are similar when their similarity score is greater than the
threshold θ (see line 16 of Alg. 1), increasing θ is a possible
solution to reduce false positives. Unfortunately, our study
demonstrates that raising θ cannot significantly decrease
false positives to support BSCA. For example, when
using CommercialB with the optimal threshold θ = 0.95,
which is selected with our hyperparameter selection dataset
(see Sec. 4.3), an assembly function can find its similar
function in 3.43 OSS projects on average, which means
at least 70.8% (2.43/3.43) of similar function pairs are
false positives. After raising θ to 0.99, close to the upper
bound of cosine similarity, the average number of similar
functions for each binary function is still 2.7, i.e., the false
positive rate is 63.0% (1.7/2.7). In contrast, TLSH used
by Centris is much more precise, with an average of 1.45
similar functions for each source function.
False Positive Case Study. Fig. 6 provides two functions
classified as similar by CommercialB with a similarity
score over 0.95. Fig. 6(a) and Fig. 6(c) present function
compare’s source and binary code, respectively. Function
compare belongs to the OSS jsoncpp [16], which is reused
by ControlBlock [10] (i.e., a driver for an extension
board). Fig. 6(b) and Fig. 6(d) show the source and
binary code of function Unref of gRPC [15] (i.e., a remote
procedure call framework), respectively. The binary code
of Unref is stored in the OSS database.

While disassembling, IDA pro, the disassembler of
CommercialB , successfully extracts the binary function of

Binaries compiled
by gcc

Binaries compiled
by clang

Binaries compiled
by MSVC

0.0
0.2
0.4
0.6
0.8

F1
 sc

or
e BSA tools CommercialA BAT LibDB

Figure 7. Version identification F1 scores of different tools.

compare from the whole executable. As illustrated in Fig. 5,
CommercialB will convert the binary code of Fig. 6(c)
into an embedding vector to search for a similar function
in the OSS database. The binary code of Unref (i.e.,
Fig. 6(d)) is also similarly converted into an embedding
vector by CommercialB . To decide whether ControlBlock
reuses gRPC, our BSCA framework will search if there is
a function of gRPC similar to compare. Unexpectedly, the
cosine similarity between vectors of Unref and compare

is sufficiently high.

The source code (Fig. 6(a) and Fig. 6(b)) illustrates
notable differences between compare and Unref. However,
they look similar after compilation (Fig. 6(c) and Fig. 6(d)).
Both functions contain three basic blocks with similar
CFGs. After entering the function, they both invoke a
callee; the following conditional jump instructions (i.e.,
jne and je) control the CPU to execute the second (L1)
or third basic block (L2). Moreover, their second blocks
invoke another callee, and their third blocks are functions’
epilogues. Note that we add the callee symbols (i.e.,
operator< and operator>) for readability, and they are
not known in the stripped binary code of compare. Hence,
we conclude that CommercialB treats compare as similar
to Unref because of their similar CFGs. Although the
source codes of these two functions are semantically and
syntactically distinct, classifying their assembly functions
as similar seems reasonable with existing BSA tools. Such
false positives imply the gap between binary code similarity
and reuse relations, i.e., a reuse relation is not necessary
for a high similarity score.

Comparison across Different Settings. Comparing the F1
scores of our BSA solutions across three settings shows that
cross-platform is still challenging. In Sec. 5.1, we report
that they all gain high AUC scores on the frequently-used
Binutils dataset across all settings. However, all B2B tools
(T1-T5) showed notable performance degradation in the
cross-platform setting (S3) of Table 4. Their F1 scores
decrease by over 0.1 compared with the other two settings.
Regarding the cross-compiler setting (S2), we can see a
slight reduction of B2B tools’ F1 scores compared with
S1, which denotes that our BSCA framework inherits the
difficulties of B2B tools.

5.3. Version Identification

We implement Centris’s version identification in our
BSCA framework. Centris assigns weights to all functions;
then, it scores a version by summing weights of similar
functions belonging to that version. The version with
the highest score is identified as reused. To improve the
precision, Centris assigns a larger weight to the function
existing in fewer versions. Given a function f of an OSS, its
weight is computed with W (f) = log(n/|V (f)|), where
n is the total number of versions of the OSS, and |V (f)|
is the number of versions containing f .

Fig. 7 presents the results of version identification. Our
experiment shows that BAT achieves the best F1 score in
the version identification task. Since OSS identification is
the pre-condition of version identification, LibDB’s version
identification accuracy is lower than that of BAT.

After a detailed manual analysis, we conclude that
identifying the exact reused version is difficult for existing
BSA tools since they are not sufficiently sensitive to

minor changes. Minor changes like small patches do not
significantly change a function’s functionality and control-
flow structure. Thus, an old version function can still
be treated as similar to the updated one. For instance,
the notorious HeartBleed vulnerability affects the func-
tion tls1 process heartbeat of OpenSSL from version
1.0.1a to 1.0.1f. When we feed a binary compiled from
OpenSSL-1.0.1g (without the vulnerability), SAFE can
successfully discover the existence of function tls1 -

process heartbeat but report a wrong version since
the vulnerable version gains a higher similarity than the
patched function (0.959 to 0.944). Therefore, we believe
that a future direction of BSA works is to perform minor-

change-sensitive matching. This way, BSA tools could
accurately solve tasks like patch presence detection and
version identification.

In sum, directly employing BSA techniques in the
BSCA pipeline cannot gain satisfactory accuracy in identi-
fying OSS. Our analysis reveals the low precision problem
of BSA tools in the BSCA scenario. Moreover, existing
BSA tools can hardly work on version identification since
they are insensitive to minor changes.

6. Enhancement

With findings obtained in Sec. 5, we explore enhance-
ments over our BSCA pipeline from three aspects. In
particular, we first present three enhancements in Sec. 6.1,
Sec. 6.2, and Sec. 6.3, and then discuss their effectiveness.

6.1. Enhancement – Signature

Originating from the primary setup of modern BSA
techniques, our study pipeline in Sec. 5 performs function-
level matching. Nevertheless, our observation shows that
string-level signatures likely facilitate a more accurate
matching. The string-level signatures have been seen to
be employed by existing SCA tools [48, 57, 100]. Those
tools do not extract and compare program semantics but
merely rely on the extracted string-level signatures, which
are expected to be generally unchanged across different
compilers, optimizations, and platforms. Therefore, we
expect to use string-level signatures to identify the false

negative function pairs as positives while maintaining a

low false positive rate. Also, extracting these string-level
features usually poses few additional challenges compared
with recovering assembly functions.

We use IDA pro to search and extract strings from
the input software and OSS executables at this step. All
strings referred to by a function composes its signature.
When OSS source code is used, we directly extract them
from the source code with BAT’s string extraction utility.
Given a function f of the input binary and a function t

recorded in the OSS database, we compute their similarity
score by Eq. 1,

sim(t, f) = cos(vec(t), vec(f)) +
α|sig(t) ∩ sig(f)|

|sig(t)|
(1)

where vec(f) is the embedding vector of f , and sig(f)
is the set of referred string signatures of f . The original
similarity computed by a BSA tool is cos(vec(t), vec(f));
we add it with their signature similarity, in which α is
a weight factor. Since our goal with this enhancement is
identifying the false negatives as positives, we use a rela-
tively large factor (α = 10) to largely raise the similarity
between functions with low cosine similarity. Unlike using
strings for BSCA directly, we still focus on functionality
code for BSCA, and the signature enhancement can be
viewed as a shortcut to better BSA results.

While collecting string-level signatures, we notice some
strings are frequently used by various OSS instances, such
as “%s.” To ensure the matched string-level signatures
are strong evidence of reuses, strings in more than 100
OSS projects will be omitted. We leave presenting and
discussing the enhancement results in Fig. 9. In short, the
F1 scores for all B2B tools are increased with the extracted
string-level signatures.

6.2. Enhancement – Global Information

Different from function-level BSA works that aim at
assembly functions, BSCA focuses on the whole binary.
Hence, it is reasonable to use richer information to im-
prove the BSCA results. Specifically, we exploit relations
between functions.

Call graph. A call graph is a directed graph. It can
be represented by G = (V,E), where V is the set of
all functions, and E is the set of all calling relations.
Since we analyze binaries compiled by different toolchains,
the input binary’s and an OSS project’s call graphs can
be different due to different optimization strategies like
function inlining [61], even if they are compiled from the
same source code. To design a robust enhancement, we
extend the set of calling relations E. If E contains (fu, fv)
and (fv, fw), we add (fu, fw) to E. We repeat this process
until E reaches a fixed point.

To reduce the falsely identified similar functions using
calling relations, a straightforward idea is that a function

without a matched calling relation is likely a false match.
By changing matching functions (nodes) to matching
calling relations (edges), we successfully improve the
BSCA results with B2B tools.

Layout. Although call graph is effective in improving
BSCA, existing tools like CodeQL [53] need to compile a
project before generating its precise call graph. However,
as mentioned in Sec. 2.2, B2S BSA is designed to save
the effort for compiling the OSS database. Therefore, we
use the layout of a binary as a replacement when we use
B2S solutions.

When compiling C/C++ programs into executables,
compilers first compile each C/C++ source file into an
object file and then link all object files into an executable.
A common observation is that functions in the same source
file will be put into the same object file, and then very

likely placed closely in the executable. Hence, during OSS
detection with B2S tools (e.g., CodeCMR), we check if
more than one functions from the same source file can be
detected closely from the input executable.

Algorithm 2 Update the similar function pairs with layout.

1: function UPDATE WITH LAYOUT(M , L)
2: # M is the set of function matching results.
3: # L is the set of source files of an OSS.
4: R← ∅
5: M ′ ← sorted(M) . Sort M by the order of input functions.
6: for (ti, fi) ∈M ′ do . ti is the similar function in database.
7: Q← {l|l ∈ L and ti ∈ l and length(l) > 1}
8: L← L−Q . Every object’s layout is used once.
9: for l ∈ Q do

10: x← [fi, fi+1, ..., fi+length(l)−1]
11: y ← [ti, ti+1, ..., ti+length(l)−1]
12: s←LONGEST COMMON SUBSEQUENCE(y,l)
13: if length(s) > 1 then
14: R← R ∪ s
15: return R

Alg. 2 illustrates the idea of layout enhancement. Given
the similar function pairs produced by BSA tools, we first
sort them by function memory addresses in the input binary
(line 5). While iterating the ordered functions of input
binary, given fi and its similar function ti in the database,
we can get Q, the set of source files containing ti from
the OSS source file set L (line 7). While iterating l ∈ Q,
we can generate a “window” with the same size as object
l, which contains a list of functions. x is the “window”
with ordered functions of the input binary (line 10), and
y is the “window” with similar functions according to
x (line 11). Since l and y are lists of functions in the
OSS database, we can compute their longest common
subsequence as s (line 12). When s has more than one
element (line 13), there must be another function tj ∈ l
that is close to ti. Since their matched functions (fi and
fj) in the input binary are also close, ti and tj are likely
to be true matches.

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8𝑡3 𝑡4 𝑡5 𝑡6𝑡3 𝑡9 𝑡6 𝑡10
𝑥

𝑦:𝑙: 𝑡3 𝑡6
Figure 8. Layout matching processing.

Fig. 8 depicts an example. Given the similar function
pair (f3; t3), we get l containing t3 with four functions.
Then we extract the consecutive four functions from the
input binary, and their similar functions compose y. After
comparing y and l, t3 and t6 are deemed correct matches,
whereas t4 and t5 will be ignored. This enhancement
successfully reduces many false positives in matching OSS
with global layout knowledge.

6.3. Enhancement – Distinguishability

An insight of this enhancement is that certain complex
functions with unique semantics may serve as a strong
indicator to confirm an OSS reuse. Hence, we design the
distinguishability to describe the degree to which a function
can represent a particular OSS. Specifically, we adapt
BAT’s string literals ranking function to our function-level
distinguishability enhancement. We use complexity(f),

the number of instructions of f , as the dividend. Intu-
itively, a utility function likely matches similar functions
across various OSS projects, resulting in unavoidable
false positives. Therefore, we use β|match(f)|−1 as the
divisor to decrease the importance of such functions. The

distinguishability is computed by Dis(f) = complexity(f)
β|match(f)|−1 ,

where match(f) is the set of OSS projects with functions
being matched to f . We require match(f) to have at least
one element; otherwise, we treat f as the custom code.
β > 1 is a constant whose value is seen to have a small
impact on the results; we set β as 5 following the prior
work’s setting [56].

Given an input binary and an OSS, let M be the set
of similar function pairs and (ti, fi) ∈ M is a pair where
ti and fi belong to the OSS and input binary, respectively.
The score of the given OSS is

∑
(ti,fi)∈M Dis(fi). The

OSS is deemed reused if the score exceeds the threshold
hyperparameter γ. We set γ = 100, which is consistent
with the BAT’s setting. The threshold γ is only involved in
the OSS identification phase when the distinguishability
enhancement is enabled. Otherwise, we still use the setting
of Centris described in Sec. 4.1, i.e., an OSS project is
identified as reused when we find that 10% of its functions
are similar to functions of the input binary.

Unlike the distinguishability described above, Centris
assigns weights to functions in the OSS database for
version identification; differently, this step aims to assign
a distinguishability score for each function of the input
binary during OSS identification. The sum of Centris’s
weights ranks the likely reused version of an OSS, but we
sum the distinguishability scores to determine whether an
OSS is reused. If a function with a higher distinguishability
score is matched to an OSS’s function by BSA, the chance
of reusing this OSS is also higher. Fig. 9 reports the effec-
tiveness of this enhancement. This enhancement improves
the performance of all tools on the OSS identification task.
The F1 scores of all BSA tools are further increased by
over 0.2 on average.

6.4. Utilizing Enhancements

Since three enhancements can work individually or
jointly, we evaluate their performance with different modes
in the following section. When three enhancements work
jointly, given an OSS project, we first employ string
signatures (sig) to update the similarity scores calculated
by BSA techniques and to produce updated similar function
pairs. Then, the global enhancement reduces the false
positives by detecting similar edges or comparing the
memory layout of function pairs (glb). After getting similar
function pairs with all OSS projects, we calculate the
distinguishability scores for each input function (dis) and
decide the reuse relation for each OSS project.

6.5. Enhancement Results Discussion

OSS Identification. Fig. 9 depicts how the F1 scores are
changed according to various enhancements. In 14 of the
18 settings (6 BSA tools with binaries compiled by 3
toolchains), enabling three enhancements results in better
performance than existing BSCA solutions, which depend
on string literals and syntactic-based BSA technique (i.e.,

(a) Binaries compiled by gcc

(b) Binaries compiled by clang

(c) Binaries compiled by MSVC

Figure 9. OSS identification F1 scores with enhancements. sig, glb, and
dis denote string signature, global information, and distinguishability
enhancements, respectively. + means their combination.

Gemini). The performance of the rest four cross-platform
settings does not exceed string-based BSCA solutions, but
our enhancements still raise their F1 scores by over 0.2.

Amoung the three enhancements, dis usually brings
the most significant improvement. Enabling dis raises an
average F1 score of all settings by 0.186, and the maximum
improvement is 0.405. In addition, although we set the
threshold for distinguishability scores with a fixed value
(γ = 100) for six BSA tools, developers can fine-tune γ
with their BSA tool to achieve an optimal BSCA result.
We present a study of the impact of different values of γ
in Fig. 11 and Sec. A of Appendix.

When enabling sig alone, the F1 scores of all B2B tools
are slightly increased by 0.0197 on average, which means
that merely a small portion of functions are identified
by string-level signatures. In comparison, glb and dis
enhancements can notably raise the F1 scores by 0.144 and
0.186, respectively. However, the low improvement of sig
alone does not mean that it is useless. We notice a synergy
effect between sig and glb enhancements (i.e., sig + glb),
which further increases the F1 scores by 0.1 on average
compared with enabling glb alone (0.244 to 0.144). Recall
in Sec. 6.2 that given a matched function f , if no callers
(or callees) of f (i.e., call graph-based enhancement) or
functions close to f in memory (i.e., layout enhancement)
match the functions of the OSS project, f will be omitted.
Hence, when glb is enabled, a more stringent criterion
is used to determine whether two functions are similar.
Hence, while reducing the number of false positives, some
true positives are also judged as dissimilar. To alleviate this
problem, using string-level signatures to precisely identify
additional functions is a solution.

Overall, enabling all three enhancements can achieve
the best performance. The F1 scores of all tools are
increased by 0.315 on average, and the maximum im-
provement is 0.45 while analyzing binaries compiled by
clang with CodeCMR (i.e., the black curve of Fig. 9(b)).

Among the three binary settings, the cross-platform
compiled binary poses a critical challenge to BSCA.
SAFE, Asm2vec, PalmTreeB , and PalmTreeG were orig-

Binaries compiled
by gcc

Binaries compiled
by clang

Binaries compiled
by MSVC

0.0
0.2
0.4
0.6
0.8

F1
 sc

or
e

CB CodeCMR CA BAT LibDB

Figure 10. Version identification results with enhancements.

inally trained with binaries compiled by gcc and clang.
Although our enhancements vastly improve their F1
scores, their performance is still incomparable to BAT and
CommercialA when identifying binaries compiled by MSVC.
CommercialB is also trained with binaries compiled by
MSVC; however, its F1 score is also largely decreased from
over 0.3 to less than 0.2 when disabling enhancements,
resulting in relatively poor performance compared to
CodeCMR, i.e., the B2S solution.

One may question if BSCA developers shall consider
training a separate model for each platform to alleviate
the challenges of cross-platform BSCA. We argue that
this is unlikely to promote B2B BSA, if not making it
impractical. In practice, migrating OSS to platforms that
were not originally supported often requires significant
manual effort from software developers. Consequently,
BSCA service providers may not have access to OSS
binaries for an originally unsupported platform, making
cross-platform capability indispensable for B2B solutions.
Regarding B2S BSA, the primary focus lies in addressing
the cross-modality challenge. Conventional approaches
extract platform-independent features like strings and
exported function names, while the machine learning
methods (e.g., CodeCMR) use binaries of various platforms
for training to improve their ability to overcome the cross-
modality challenge.

On the other hand, the performances with enhance-
ments of six tools are consistent with their initial results
(i.e., none in Fig. 9). CommercialB and CodeCMR are still
the two best BSA tools with enhancements applied. With
this observation, we infer that our enhancements should still
work and bring a promising result when a more advanced
BSA tool is available.

Version Identification. A correct OSS identification is the
pre-condition of an accurate version identification. Hence,
improving OSS identification will result in a growth in
version identification accuracy. Due to the incapability
of existing BSA tools to identify functions of different
versions, we view version identification as a completely
new task. After identifying all reused OSS instances
with our BSCA framework, we rely on BAT to rank
the most likely version for each identified OSS instance
with string signatures. Fig. 10 presents the F1 scores of
the version identification task. Both CommercialB and
CodeCMR outperform BAT when enabling all enhancements.
Besides string-level signatures, we argue that techniques
that are sensitive to minor changes (e.g., patch presence
detectors [96, 103]) can take part in the version identifica-
tion process, and the existence of a specific unique code
snippet can be used to determine the exact version.

7. Time Cost of Online Analysis

Compared with signature-based SCA works like BAT,
whose online analysis phase is efficient due to fast hash

matching, the time cost of function-level granularity match-
ing used in our BSCA framework is not trivial. Centris,
having the same workflow but deciding similar function
pairs with the distance of TLSH, takes nearly 8 hours for
the component identification with our benchmark dataset.
LibDB spends most of its time on time-consuming call
graph-based analysis, which takes over a hundred CPU
hours for 35 binaries. As depicted in Fig. 2, the online
analysis phase can be further split into (1) Disassembling &
dissection, (2) BSA, and (3) OSS & version identification.
We do all experiments with an AMD 3970X server with
256GB memory and an RTX3090.
Disassembling & Dissection. We implement BSA tools
with the IDA pro disassembler. The size of binaries in
our dataset is 9,089KB on average. The IDA pro (ver 7.5)
successfully analyzed 35 binaries within 4.5 hours.
BSA. The BSA process consists of two stages. Given a
binary code embedding tool, we first (a) encode the input
binary’s functions. Then, we employ Milvus, the vector
database, to (b) search for similar functions. The efficiency
of (a) depends on the embedding tool, while the size of
vectors influences the query speed in (b). CommercialB ,
the most accurate but least efficient tool, consumes 10
hours in (a) and 22 minutes in (b) with 256-dimension
vectors. The time cost of BSA with CommercialB for
online analysis is about 10.5 hours.
OSS & Version Identification. BSCA with CommercialB
costs half an hour to analyze the matching results without
any enhancement. The overhead of signature and distin-
guishability enhancement is negligible. Global enhance-
ment rises the overhead by 315% (about 1.5 hours).

Overall, analyzing 35 binaries with six evaluated BSA
tools takes 10 to 18 hours. Given that Centris takes about
eight hours to finish the corresponding SCA task, the
time cost of our BSCA framework is comparable and
reasonable.

8. Vulnerability Detection with BSCA

After identifying the reused OSS projects and their ver-
sions, as mentioned in Sec. 2.1.1, the next is to extract
valuable information from the reused information. In this
study, we reuse the vulnerability dataset from previous
works [44, 47, 91] to show an example of using SCA
to detect vulnerabilities. The dataset contains eight vul-
nerabilities from seven OSS projects. Our experiment is
more challenging than previous works since our database
(millions of functions) to be searched is much larger than
previous works’ databases (3,015 functions).
Experimental Setup. To perform SCA on the dataset, we
first compile all versions of those projects with gcc and
add them to our OSS database. Given the eight CVEs,
we build the benchmark dataset with clang by compiling
those seven projects’ last affected versions (i.e., Affected
Ver. of Table 5) and the versions after the affected versions
(i.e., Non-affected Ver. of Table 5), resulting in 16 binaries.
As presented in Sec. 5.2, this setting poses cross-compiler
challenges to our BSCA framework. We do not include
cross-platform binaries in this experiment since some
projects have no cross-platform support. We use the BSCA
framework with CommercialB , the best-performing setting
for ELF binaries. Table 5 shows the results of vulnerability
detection with BSCA.

TABLE 5. VULNERABILITY DETECTION WITH BSCA

Vulnerability CVE OSS Affected Ver. Non-affected Ver.

Shellshock #1 2014-6271 3 3 3*
Shellshock #2 2014-7169 3 3 3*
FFmpeg 2015-6826 3 5 3*
Clobberin’ Time 2014-9295 3 3 3

Heartbleed 2014-0160 3 3 3

wget 2014-4877 3 3 3

ws-snmp 2011-0444 3 3* 5

Venom 2015-3456 3 3* 3*

3 Identified the exact OSS and version.
3* Identified the (non-)affected version but a wrong version.
5 Failed to identify the (non-)affected version.

All reused OSS projects are correctly identified since
all the binaries reuse hundreds of functions from the OSS
projects. Thus, our BSCA framework can always identify
sufficient similar functions for OSS identification. Among
16 binaries, half are identified with the exact version
(marked by 3). Although the identified versions for the
remaining may be wrong, six (marked by 3*) still show the
existence of the vulnerabilities. There is only one missing
alarm and one false alarm eventually (marked by 5).

Missing Alarms of BSCA. A “5” in the Affected Ver.
column indicates a missing alarm. False negative (FN) of
BSCA (i.e., incorrectly identifying the affected version as
non-affected) can cause missing alarms. For the FN of
BSCA presented in Table 5 (i.e., FFmpeg), the identified
version is very close to the affected version. The vulnerable
FFmpeg version is n2.6.3, and the detected version is
n2.7.0, released just one month after n2.6.3. In practice,
the BSCA solutions can still report vulnerabilities to avoid
missing alarms when the identified version is close enough
to a vulnerable version.

False Alarms of BSCA. A “5” in the Non-affected
Ver. column indicates a false alarm. False positive (FP)
of BSCA (i.e., incorrectly identifying the non-affected
version as affected) can cause false alarms. When analyzing
non-affected binaries, our framework incorrectly classifies
one (i.e., ws-snmp of Wireshark [27]) as vulnerable. The
differences between the affected (v1.4.2) and non-affected
version (v1.4.3) are small, i.e., only 0.6% of functions are
newly added or changed in v1.4.3. However, due to BSA’s
insensitivity to minor changes, 2.6% of functions from
v1.4.3 are falsely identified as the functions from versions
prior to v1.4.2, leading to the false alarm. Nevertheless,
we believe that the false alarm will not substantially waste
developers’ time since developers can post-check those
warnings easily with the source code. Besides, a patch
presence detector can also verify the alarm. We report that
FIBER [103] successfully identifies this patch, eliminating
the false alarm.

9. Impact of Compilation Optimizations

Sec. 4.3 mentions that few developers release non-
optimized binaries. To be close to the real-world sce-
nario, our benchmark dataset is compiled with default
optimizations. In this section, we investigate the impact of
compilation optimizations on our BSCA framework. Since
iterating all optimization options is impractical, we focus
on the (possibly) most attention-drawing optimization for
BSA techniques, i.e., function inlining [61].

Impact on B2B tools. Existing BSA works demonstrate
that comparing optimized and non-optimized binaries is
challenging [47, 61, 70, 77, 98, 99]. Since we build our OSS

TABLE 6. INLINING’S IMPACT FOR HEARTBLEED DETECTION

Inline CommercialB (B2B) CodeCMR (B2S)
setting Aff-Ver Non-Ver Aff-Ver Non-Ver

Enabled 3 3 5 3*
Disabled 3* 5 3 3

Aff-Ver and Non-Ver denote affected version (1.0.1f) and
non-affected version (1.0.1g), respectively.

database with optimized binaries, analyzing non-optimized
binaries is likely more challenging than analyzing op-
timized binaries. However, we argue that changing the
optimization options of the query dataset will not prevent
BSCA. As a demonstration, we re-compile the setting of
searching Heartbleed in Sec. 8 with -fno-inline to dis-
able function inlining. We select the notorious Heartbleed
since the number of affected versions is the greatest among
eight CVEs, which potentially denotes the most difficult
in identifying the exact reused version of the binaries after
changing the compilation option and reveals the impact of
function inlining. We then use CommercialB to identify
the OSS and versions in this study.

The second and third columns of Table 6 show
CommercialB’s results. We observe that CommercialB
identifies the reused OSS (i.e., OpenSSL), while the
version identification accuracy decreases. Specifically, after
disabling inlining for compiling the binaries, although the
number of similar function pairs decreases from 306 to 126,
the remaining 126 similar function pairs are still sufficient
for identifying the reused OSS (i.e., OpenSSL). The
version identification is also useful for further vulnerability
detection since the identified version (1.0.1d) is close to
the exact versions (1.0.1f and 1.0.1g).
Impact on B2S tools. Since B2S tools’ OSS databases are
built from the source code directly, the source functions
in the database are not inlined. Hence, for B2S tools,
analyzing binaries compiled with function inlining is more
difficult than binaries without inlining [61]. However, our
selected B2S tool, CodeCMR, is well-trained with inlined
assembly functions. It can still identify 56% of reused
functions, accurately detecting the existence of OpenSSL.

Nevertheless, as shown in Table 6, function inlining
causes inaccurate version identification, and there is a FN
in identifying the affected version. We also observe that the
identified version (1.0.1l) is close to a vulnerable version
(1.0.1f). As mentioned in Sec. 8, we can invoke a patch
presence detector to verify the existence of Heartbleed
and eliminate the FN. When analyzing binaries compiled
without inlining, CodeCMR can detect nearly 95% of similar
functions from OpenSSL, identifying the exact reused
versions.

10. Threats to Validity

Internal Validity. Although we have spent tremendous
efforts on labeling the ground truth of the reuse relations,
we cannot ensure whether all reused OSS projects are iden-
tified, especially modified reuses. However, all identified
reuse relations are reliable and sufficient to present our
BSCA framework’s performance and reveal the incapability
of existing BSA solutions.
External Validity. We extend the workflow of advanced
SCA solutions, Centris [94], for our BSCA analysis.
Although Centris’s authors reported that function-level
granularity is the best for source-based SCA compared

with file-level and line-level granularities, it may differ in
BSCA. Nevertheless, we still work on the function-level
granularity since it is the most frequently studied. We
admit that others, like block-level granularity, may also
work. However, existing de facto block-level embedding
technique (i.e., DeepBinDiff [49]) relies on expensive
algorithms to produce block embedding vectors. Moreover,
DeepBinDiff relies on k-hop greedy matching algorithm,
which is slow and cannot be accelerated by vector database.
Thus, we do not evaluate it in this study.

11. limitations and Future Work

Software Obfuscation. Obfuscation techniques can pro-
duce binaries dramatically different from normally-
compiled ones [36, 64]. Some obfuscation techniques, like
opaque prediction, can significantly change the CFG of
a function; thus, the function embeddings depending on
CFG structure, which is the most frequently used feature,
become unreliable, and the similar function pairs are
meaningless. Moreover, existing obfuscation techniques
like data encryption, function reordering, and garbage code
insertion can make our three enhancements ineffective.
A potential solution is restricting obfuscation to custom
code only. Since obfuscation inevitably introduces extra
execution overhead, obfuscating only custom code can
protect developers’ intellectual property while not incurring
a huge overhead, and our BSCA framework can still
identify the OSS projects being used.
C/C++ software. Many other programming languages, like
C#, Rust, and Go, can also be compiled into binary exe-
cutables. However, this study focuses on C/C++ software,
as existing BSA techniques also primarily target C/C++
software. Furthermore, the complex and long-standing
usage of toolchains in the C/C++ ecosystem [89] makes the
analysis of C/C++ software particularly challenging. This
work could potentially be extended to software developed
with other programming languages, and we leave such
exploration for future research.
Backported Patches. Software developers often backport
patches from newer versions to older versions to fix
vulnerabilities instead of upgrading the software due to
compatibility issues. This practice, however, places a
challenge on all SCA tools since an identified “vulnerable”
component may be patched already and might result in
false alarms. Due to the one-time effort of patching a
vulnerability and the catastrophic consequences of not
patching, we argue that reporting false alarms is more
acceptable than missing alarms. Moreover, verifying the
existence of a patch should not be a difficult task for devel-
opers with source code, and existing works [63, 96, 103]
can be employed as a post-check to verify BSCA alarms
by identifying the existence of patches.

12. Related Work

Binary Software Composition Analysis
(BSCA). BAT [56] and OSSPolice [48] employ string-level
signatures like strings and exported function names.
B2SFinder [100] additionally extracts if/else and
switch/case structures for higher accuracy. Although
their selected features are helpful, they discard semantic
knowledge and cannot work when the OSS project has

few unique strings (e.g., RapidJSON [22]). LibDB [88], a
recent BSCA work, employs a function-level embedding
technique using manually selected features (i.e.,
Gemini [95]) to decide binary function similarity, and
it uses function call graphs as global knowledge to
improve matching precision. However, LibDB does not
learn from SOTA SCA methods to establish the BSCA
pipeline, and it lacks using SOTA BSA tools as the
cornerstone, as clarified in Sec. 5.2. Comparing to LibDB,
we also propose a set of optimizations to largely improve
our BSA-based BSCA performance and surpass the
commercial solution. Moreover, LibDB requires compiling
its OSS database, while we extensively explore comparing
the binary with source code (the B2S-based BSCA);
this solution alleviates the compilation overhead and is
generally more extendable.
Binary Similarity Analysis (BSA). We now discuss
relevant but not selected BSA solutions. Existing meth-
ods usually extract semantic features from binary since
the compiler can change the structure information (e.g.,
CFG) significantly. CoP [73, 74], BinGo [40], BinSim [80],
IMF-SIM [93], [65], and FIBER [103] extract semantic
features via symbolic or dynamic execution, which may
bring unacceptable overhead [106]. Gitz [45] lifts binary
code to LLVM-IR, then employs the optimizer to transform
the IR with the same options. It heavily relies on the quality
of the lifter. Recent works often take advantage of machine-
learning techniques. αdiff [72] treats a binary function
as an image, then uses a CNN model to produce the
embedding of a binary function. InnerEye [106] treats in-
structions as words and blocks as sentences, then produces
their embeddings with word2vec [78]. The program’s CFG
is decomposed into paths for similarity detection.
Program Clone Search. A recent work named PSS [38]
considers this problem, i.e., given a target program and a
repository of known programs, the goal is to find the binary
in the repository most similar to the target. Compared with
SCA, which produces a list of reused OSS projects, PSS
only returns one program. We clarify that SCA itself is
not a similarity analysis problem, although many existing
SCA works are supported by similarity analysis techniques
(e.g, SourcererCC [83], LibID [104], and Centris [94]).

13. Conclusion

In view of the prolific development of BSA, we
conducted the first comprehensive analysis of BSA to
promote the development of BSCA, a critical application
widely needed in security and software re-engineering
tasks. Our experiment revealed that directly using BSA
techniques in the SCA pipeline does not lead to satisfactory
performance, and is incapable of version identification. We
then proposed enhancements from three aspects, which
largely improved the accuracy of OSS identification with
moderate costs.

Acknowledgements

This work was supported in part by CCF-Tencent
Open Research Fund and NSFC/RGC Joint Research
Scheme (JRS) under the contract N HKUST605/23. We
are grateful to the anonymous reviewers for their valuable
comments.

References

[1] Androguard. https://github.com/androguard/androguard.
[2] Apache Portable Runtime Project. https://apr.apache.org/.
[3] Apktool. https://ibotpeaches.github.io/Apktool/.
[4] asm2vec-pytorch. https://github.com/oalieno/asm2vec-pytorch.
[5] Binutils. https://www.gnu.org/software/binutils/.
[6] Black Duck Binary Analysis. https://www.

synopsys.com/software-integrity/security-testing/
software-composition-analysis/binary-analysis.html.

[7] BSA2BSCA. https://sites.google.com/view/bsa2bsca/home/.
[8] Bytesafe. https://bytesafe.dev/.
[9] CODESentry: Binary Software Composition Analysis. https://www.

grammatech.com/binary-software-composition-analysis-sca.
[10] ControlBlockService2. https://github.com/petrockblog/

ControlBlockService2.
[11] Coreutils. https://www.gnu.org/software/coreutils/.
[12] dex2jar. https://github.com/pxb1988/dex2jar.
[13] Gemini. https://github.com/xiaojunxu/dnn-binary-code-similarity.
[14] GoogleTest. https://github.com/google/googletest.
[15] gRPC. https://github.com/grpc/grpc.
[16] JsonCpp. https://github.com/open-source-parsers/jsoncpp.
[17] libmcp23s17. https://github.com/piface/libmcp23s17.
[18] Nano. https://github.com/nanocurrency/nano-node.
[19] OpenSSL. https://www.openssl.org/.
[20] PalmTree. https://github.com/palmtreemodel/PalmTree.
[21] Project Chrono. https://github.com/projectchrono/chrono.
[22] RapidJSON. https://github.com/Tencent/rapidjson/.
[23] SAFE. https://github.com/gadiluna/SAFE.
[24] Snyk. https://snyk.io/what-is-snyk/.
[25] The IDA Pro disassembler. https://www.hex-rays.com/products/

ida/index.shtml.
[26] Whitesource. https://www.whitesourcesoftware.com/

product-overview/.
[27] Wireshark. https://www.wireshark.org/.
[28] Can’t run OSSPolice. https://github.com/osssanitizer/osspolice/

issues/1, 2023.
[29] Guide to Software Composition Analysis. https://snyk.io/series/

open-source-security/software-composition-analysis-sca/, 2023.
[30] Problem installing Redis of OSSPolice. https://github.com/

osssanitizer/osspolice/issues/2, 2023.
[31] Scantist. https://scantist.io/, 2023.
[32] Software Composition Analysis Explained. https:

//www.whitesourcesoftware.com/resources/blog/
software-composition-analysis/, 2023.

[33] zlib. https://zlib.net/, 2023.
[34] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-

party library detection in android and its security applications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pages 356–367, 2016.
[35] Brenda S Baker, Udi Manber, and Robert Muth. Compressing

differences of executable code. In ACMSIGPLAN Workshop

on Compiler Support for System Software (WCSS), pages 1–10.
Citeseer, 1999.

[36] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack New-
sham, and Alexander Pretschner. Code obfuscation against
symbolic execution attacks. In Proceedings of the 32nd Annual

Conference on Computer Security Applications, pages 189–200,
2016.

[37] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler.
Neural code comprehension: A learnable representation of code
semantics. NIPS 2018, 2018.

[38] Tristan Benoit, Jean-Yves Marion, and Sébastien Bardin. Scalable
program clone search through spectral analysis. In Proceedings of

the 31th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2023.

[39] The National Cyber Security Centre. Log4j
vulnerability. https://www.ncsc.gov.uk/information/
log4j-vulnerability-what-everyone-needs-to-know, 2021.

[40] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang
Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. BinGo: Cross-
architecture cross-OS binary search. FSE, 2016.

[41] Yang Chen, Andrew E Santosa, Asankhaya Sharma, and David
Lo. Automated identification of libraries from vulnerability data.
In Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering: Software Engineering in Practice, pages
90–99, 2020.

[42] Yang Chen, Andrew E Santosa, Ang Ming Yi, Abhishek Sharma,
Asankhaya Sharma, and David Lo. A machine learning approach
for vulnerability curation. In Proceedings of the 17th International

Conference on Mining Software Repositories, pages 32–42, 2020.

[43] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings
of latent variable models for structured data. In International

conference on machine learning, pages 2702–2711. PMLR, 2016.

[44] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity
of binaries. PLDI, 2016.

[45] Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of
binaries through re-optimization. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, pages 79–94, 2017.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional transformers
for language understanding. CoRR, abs/1810.04805, 2018.

[47] S. H. Ding, B. M. Fung, and P. Charland. Asm2Vec: Boosting
static representation robustness for binary clone search against
code obfuscation and compiler optimization. In IEEE S&P, 2019.

[48] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke
Lee. Identifying open-source license violation and 1-day security
risk at large scale. In Proceedings of the 2017 ACM SIGSAC

Conference on computer and communications security, pages 2169–
2185, 2017.

[49] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. DEEP-
BINDIFF: Learning program-wide code representations for binary
diffing. 2020.

[50] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher
Kruegel. A survey on automated dynamic malware-analysis
techniques and tools. ACM Comput. Surv., 2008.

[51] Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang. A
lightweight framework for function name reassignment based
on large-scale stripped binaries. In Proceedings of the 30th

ACM SIGSOFT International Symposium on Software Testing

and Analysis, pages 607–619, 2021.

[52] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun.
Vulseeker: A semantic learning based vulnerability seeker for
cross-platform binary. ASE, 2018.

[53] Microsoft & GitHub. CodeQL. https://codeql.github.com/, 2021.

[54] Yi Gui, Yao Wan, Hongyu Zhang, Huifang Huang, Yulei Sui,
Guandong Xu, Zhiyuan Shao, and Hai Jin. Cross-language binary-
source code matching with intermediate representations. arXiv

preprint arXiv:2201.07420, 2022.

[55] Irfan Ul Haq and Juan Caballero. A survey of binary code
similarity. ACM Computing Surveys (CSUR), 54(3):1–38, 2021.

[56] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Dolstra. Finding software license violations through binary code
clone detection. In Proceedings of the 8th Working Conference

on Mining Software Repositories, pages 63–72, 2011.

[57] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Dolstra. Finding software license violations through binary code
clone detection. In Proceedings of the 8th Working Conference

on Mining Software Repositories, pages 63–72, 2011.

[58] Nasif Imtiaz, Seaver Thorn, and Laurie Williams. A comparative
study of vulnerability reporting by software composition analysis
tools. In Proceedings of the 15th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 1–11, 2021.

[59] Jiyong Jang, Maverick Woo, and David Brumley. Towards
automatic software lineage inference. In USENIX Security, 2013.

[60] Yuede Ji, Lei Cui, and H Howie Huang. Buggraph: Differentiating
source-binary code similarity with graph triplet-loss network. In
Proceedings of the 2021 ACM Asia Conference on Computer and

Communications Security, pages 702–715, 2021.

[61] Ang Jia, Ming Fan, Wuxia Jin, Xi Xu, Zhaohui Zhou, Qiyi Tang,
Sen Nie, Shi Wu, and Ting Liu. 1-to-1 or 1-to-n? investigating
the effect of function inlining on binary similarity analysis. ACM

Transactions on Software Engineering and Methodology, 32(4):1–
26, 2023.

[62] Ling Jiang, Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and
Yuqun Zhang. Third-party library dependency for large-scale sca
in the c/c++ ecosystem: How far are we? In Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing

and Analysis, pages 1383–1395, 2023.

[63] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang,
Xiaohan Zhang, Xinyu Xing, Min Yang, and Zhemin Yang. Pdiff:
Semantic-based patch presence testing for downstream kernels. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security, pages 1149–1163, 2020.

[64] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-LLVM: Software protection for the masses. SPRO,
2015.

[65] Ulf Kargén and Nahid Shahmehri. Towards robust instruction-
level trace alignment of binary code. In 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering

(ASE), pages 342–352. IEEE, 2017.

[66] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and
Yongdae Kim. Revisiting binary code similarity analysis using
interpretable feature engineering and lessons learned. IEEE

Transactions on Software Engineering, 2022.

[67] Quoc Le and Tomas Mikolov. Distributed representations of
sentences and documents. In International conference on machine

learning, pages 1188–1196. PMLR, 2014.

[68] Menghao Li, Pei Wang, Wei Wang, Shuai Wang, Dinghao Wu,
Jian Liu, Rui Xue, Wei Huo, and Wei Zou. Large-scale third-
party library detection in android markets. IEEE Transactions on

Software Engineering, 46(9):981–1003, 2018.

[69] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu,
Jian Liu, Rui Xue, and Wei Huo. Libd: Scalable and precise third-
party library detection in android markets. In 2017 IEEE/ACM

39th International Conference on Software Engineering (ICSE),
pages 335–346. IEEE, 2017.

[70] Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree: Learning
an assembly language model for instruction embedding. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security, pages 3236–3251, 2021.

[71] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard
Zemel. Gated graph sequence neural networks. arXiv preprint

arXiv:1511.05493, 2015.

[72] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li,
Aihua Piao, and Wei Zou. αdiff: Cross-version binary code
similarity detection with DNN. In ASE, 2018.

[73] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun
Zhu. Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software plagiarism detection. In
Proceedings of the 22nd ACM SIGSOFT international symposium

on foundations of software engineering, pages 389–400, 2014.

[74] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun
Zhu. Semantics-based obfuscation-resilient binary code simi-
larity comparison with applications to software and algorithm
plagiarism detection. IEEE Transactions on Software Engineering,
43(12):1157–1177, 2017.

[75] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar:
fast and accurate detection of third-party libraries in android apps.
In Proceedings of the 38th international conference on software

engineering companion, pages 653–656, 2016.

[76] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yan-
ick Fratantonio, Mohamad Mansouri, and Davide Balzarotti. How
machine learning is solving the binary function similarity problem.
In 31st USENIX Security Symposium (USENIX Security 22), pages
2099–2116, 2022.

[77] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni,
Roberto Baldoni, and Leonardo Querzoni. Safe: Self-attentive
function embeddings for binary similarity. In International Con-

ference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 309–329. Springer, 2019.

[78] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. Advances in neural information processing

systems, 26, 2013.

[79] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu
Zhang, and Zhiqiang Lin. Probabilistic disassembly. In 2019

IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pages 1187–1198, 2019.

[80] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. Binsim:
Trace-based semantic binary diffing via system call sliced segment
equivalence checking. In Proceedings of the 26th USENIX Security

Symposium, 2017.

[81] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh–a locality
sensitive hash. In 2013 Fourth Cybercrime and Trustworthy

Computing Workshop, pages 7–13. IEEE, 2013.

[82] Kexin Pei, Jonas Guan, David Williams King, Junfeng Yang, and
Suman Jana. Xda: Accurate, robust disassembly with transfer
learning. arXiv preprint arXiv:2010.00770, 2020.

[83] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy,
and Cristina V Lopes. Sourcerercc: Scaling code clone detection
to big-code. In Proceedings of the 38th International Conference

on Software Engineering, pages 1157–1168, 2016.

[84] Edward J Schwartz, Cory F Cohen, Michael Duggan, Jeffrey
Gennari, Jeffrey S Havrilla, and Charles Hines. Using logic
programming to recover c++ classes and methods from compiled
executables. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, pages 426–441, 2018.

[85] Paria Shirani, Leo Collard, Basile L Agba, Bernard Lebel, Mourad
Debbabi, Lingyu Wang, and Aiman Hanna. Binarm: Scalable
and efficient detection of vulnerabilities in firmware images of
intelligent electronic devices. In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 114–138. Springer, 2018.

[86] Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape:
Scalable and robust binary library function identification using
function shape. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, pages 301–
324. Springer, 2017.

[87] Synopsys. The heartbleed bug. https://heartbleed.com/, 2020.

[88] Wei Tang, Yanlin Wang, Hongyu Zhang, Shi Han, Ping Luo, and
Dongmei Zhang. Libdb: An effective and efficient framework
for detecting third-party libraries in binaries. 19th International

Conference on Mining Software Repositories, 2022.

[89] Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu, Shouguo Yang,
Yi Li, Ping Luo, and Yang Liu. Towards understanding third-
party library dependency in c/c++ ecosystem. In 37th IEEE/ACM

International Conference on Automated Software Engineering,
pages 1–12, 2022.

[90] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong:
A scalable and accurate two-phase approach to android app clone
detection. In Proceedings of the 2015 International Symposium

on Software Testing and Analysis, pages 71–82, 2015.

[91] Huaijin Wang, Pingchuan Ma, Shuai Wang, Qiyi Tang, Sen
Nie, and Shi Wu. sem2vec: Semantics-aware assembly tracelet
embedding. ACM Transactions on Software Engineering and

Methodology, 32(4):1–34, 2023.

[92] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu,
Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming Li,
Xiaohai Xu, et al. Milvus: A purpose-built vector data management
system. In Proceedings of the 2021 International Conference on

Management of Data, pages 2614–2627, 2021.

[93] Shuai Wang and Dinghao Wu. In-memory fuzzing for binary
code similarity analysis. In 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages
319–330, 2017.

[94] Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and
Hakjoo Oh. Centris: A precise and scalable approach for identi-
fying modified open-source software reuse. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE),
pages 860–872. IEEE, 2021.

[95] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform
binary code similarity detection. In CCS, 2017.

[96] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang
Liu, and Fu Song. Spain: security patch analysis for binaries
towards understanding the pain and pills. In 2017 IEEE/ACM

39th International Conference on Software Engineering (ICSE),
pages 462–472. IEEE, 2017.

[97] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. Deepdi: Learning
a relational graph convolutional network model on instructions for
fast and accurate disassembly. In Proc. of the USENIX Security

Symposium, 2022.

[98] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi
Wu. Order matters: Semantic-aware neural networks for binary
code similarity detection. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 34, pages 1145–1152, 2020.

[99] Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and
Shi Wu. Codecmr: Cross-modal retrieval for function-level binary
source code matching. Advances in Neural Information Processing

Systems, 33:3872–3883, 2020.

[100] Zimu Yuan, Muyue Feng, Feng Li, Gu Ban, Yang Xiao, Shiyang
Wang, Qian Tang, He Su, Chendong Yu, Jiahuan Xu, et al.
B2sfinder: detecting open-source software reuse in cots software.
In 2019 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 1038–1049. IEEE, 2019.

[101] Xian Zhan, Lingling Fan, Sen Chen, Feng Wu, Tianming Liu,
Xiapu Luo, and Yang Liu. Atvhunter: Reliable version detection
of third-party libraries for vulnerability identification in android
applications. In 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE), pages 1695–1707. IEEE, 2021.
[102] Fangfang Zhang, Yoon-Chan Jhi, Dinghao Wu, Peng Liu, and

Sencun Zhu. A first step towards algorithm plagiarism detection.
In ISSTA, 2012.

[103] Hang Zhang and Zhiyun Qian. Precise and accurate patch presence
test for binaries. In USENIX Security, 2018.

[104] Jiexin Zhang, Alastair R Beresford, and Stephan A Kollmann.
Libid: reliable identification of obfuscated third-party android
libraries. In Proceedings of the 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis, pages 55–65, 2019.
[105] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin

Yang, Min Yang, and Hao Chen. Detecting third-party libraries in
android applications with high precision and recall. In 2018 IEEE

25th International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 141–152. IEEE, 2018.
[106] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng,

and Zhexin Zhang. Neural machine translation inspired binary
code similarity comparison beyond function pairs. In NDSS, 2019.

TABLE 7. EXECUTABLES IN OUR BENCHMARK DATASET.

Binaries #Reuses #Toolchains #Functions Sizes (Bytes)

controlblock 7
gcc 1,013 721,840

clang 1,126 699,592

db bench 14
gcc 10,525 6,847,776

clang 10,148 5,764,976

dosbox core 18
gcc 11,978 9,656,088

clang 8,723 7,418,784

eth sc 13 gcc 4,896 3,462,128

example 5
gcc 1,879 811,176

clang 1,892 790,648

hyriseSystemTest
10 gcc 41,640 16,137,960
8 clang 4,995 4,229,344

kvrocks 8
gcc 12,614 12,484,216

clang 63,283 15,327,528

nano node 13 gcc 21,183 15,327,528

pagespeed automatic test 33
gcc 50,290 29,856,672

clang 41,638 30,514,480

prometheus test 4
gcc 9,075 2,627,368

clang 8,608 2,443,216

replay-sorcery 10
gcc 7,938 4,603,136

clang 8,506 5,759,864

tendisplus 12 gcc 11,960 10,206,528

turbobench 29
gcc 2,188 4,288,064

clang 2,811 4,597,768

yuzu-cmd 22 gcc 31,594 19,735,192

ChronoEngine.dll 4 MSVC 242,797 27,265,536

TortoiseGitMerge.exe 7 MSVC 28,227 6,081,536

TortoiseGitProc.exe 6 MSVC 76,902 20,257,792

WinSparkle.dll 4 MSVC 41,209 6,030,336

grpc csharp ext.dll 7 MSVC 92,799 16,130,048

iw4x.dll 9 MSVC 81,482 10,910,208

k4a.dll 6 MSVC 2,130 651,648

k4arecord.dll 8 MSVC 6,690 1,722,248

k4aviewer.exe 7 MSVC 5,967 2,403,704

libclamavd.dll 13 MSVC 18,212 11,654,144

tic80.exe 15 MSVC 22,431 8,899,072

Among 25 software, ten of them (e.g., ControlBlock) were compiled using
both gcc and clang, resulting in a total of 35 executables being analyzed.

A. Possible improvements by fine-tuning γ

According to γ varying from 0 to 1000, Fig. 11 shows
the changes of BSA tools’ F1 scores for analyzing all
35 executables, with all enhancements enabled. Except
CommercialB happened to achieve the best F1 scores
with γ = 100, the performance of other BSA tools can be
further improved with a fine-tuned γ.

B. BSA Tools Selection

B.1. B2B Tools. Finally, we select five B2B tools (see
their publications in Table 1). They all share the same
pipeline illustrated in Fig. 5.

SAFE employs word2vec [78] to produce instruction embed-
dings; then, it treats a function as an instruction sequence
and embeds it with a self-attentive network. Other selected
works use the CFG to generate the embedding vector of a
function.

Asm2vec collects paths with random walks on the CFG and
produces function embeddings by encoding the collected
paths with a PV-DM model [67].

PalmTree uses BERT [46] to produce context-sensitive
instruction embeddings. Then, the embedding of a ba-
sic block for PalmTreeG is computed by the mean of
embeddings of its instructions. Specifically, PalmTreeG
uses Structure2Vec [43] to generate the embedding for a
function’s CFG.

PalmTreeB is a combination of PalmTree and
CommercialB . Similar to PalmTreeG, it first uses
a recurrent neural network and instruction-level
embeddings to generate basic block embeddings, then
embeds the function CFG with a gated graph neural
network (GGNN) [71].

CommercialB also employs GGNN, and it further uses
additional knowledge from a decompiler to produce the
basic block embeddings.

The following elaborates on the excluded B2B tools:

DeepBinDiff is excluded since it produces block-level
embeddings, which is unsuitable for our workflow.

InnerEye decomposes the CFG into multiple paths and
computes the path similarity score with the longest com-
mon sequence (LCS) algorithm; thus, we also exclude
it since it does not produce vector representations for
assembly functions.

Gemini (CCS’17) and VulSeeker (ASE’18) employ
manually-selected features to represent basic blocks, but
later tools like SAFE (DIMVA’19), InnerEye (NDSS’19),
and DeepBinDiff (NDSS’20) all depend on instruction-
level embeddings and show better performance. In ad-
dition, the PalmTree (CCS’21) paper presents a combo
of PalmTree and Gemini, which is highly effective in
function-level BSA. Hence, we exclude Gemini and
VulSeeker but implement the combo of PalmTree and
Gemini as a variant (i.e., PalmTreeG).

GMN is a recent work that shows promising results in BSA.
However, we do not evaluate GMN due to inefficiency.
GMN does not generate an embedding vector for each
function but instead computes the similarity between two
functions with a learned model. Hence, it is not scalable to
large-scale BSCA since the similarity calculation process
of GMN cannot be accelerated with a vector database.

B.2. B2S Tools. We eventually select the industry-
developed work, CodeCMR [99], which uses cross-modality
deep learning to compare the latent representations of
assembly and source code embeddings. It does not re-
quire compiling OSS instances and exhibits high accuracy
compared with modern B2B tools. Since CodeCMR is not
publicly available, we send the data to its authors and get
the embeddings of functions. The following list excluded
B2S tools.

BAT and OSSPolice, which both rely on the string literals
and exported function symbols for C/C++ executables, are
designed to support BSCA tasks. We evaluate BAT as a
baseline. We exclude OSSPolice since we fail to set it up

SAFE Asm2vec PalmTree G

PalmTree B Commercial B CodeCMR

(100, 0.467)

(34, 0.500)

(100, 0.462)

(37, 0.496)

(100, 0.470)

(426, 0.522)

(100, 0.454)

(368, 0.484)

(100, 0.605)

(100, 0.564)

(523, 0.571)

Figure 11. γ-F1 relations of six BSA tools.

due to its dependency issues [30] and likely incomplete
code [28].
B2SFinder and XLIR require compiling source code
to LLVM-IR for extracting switch and if structures.
However, due to the complex composition of our OSS
database (e.g., OSS without Makefile or with features not

supported by LLVM), it is impracticable to compile all
these projects into LLVM-IR.

FIBER and BugGraph still need to compile the database to
binaries with various configurations, which cannot leverage
the advantage of B2S techniques mentioned in Sec. 2.2.

